What is ESD and what damages can it cause?

We’re talking about Electrostatic Discharge (ESD) on this blog all the time. But what exactly does it mean and why is it so dangerous? Today’s post will answer those questions!

ELECTROSTATIC CHARGE

All matter is constructed from atoms. These atoms have negatively charged electrons circling the atom’s nucleus which includes positively charged protons. As the atom has an equal number of electrons and protons, it balances out having no charge. So far, so good!
The problem is that all materials can tribocharge or generate ElectroStatic charges. Most commonly, this happens through contact and separation – examples are:

  • Unwinding a roll of tape
  • Gas or liquid moving through a hose or pipe
  • A person walking across a floor and soles contacting & separating from the floor.

Generating an ElectroStatic chargeUnwinding a roll of tap can generate an electrostatic charge

The simple separation of two surfaces can cause the transfer of electrons between surfaces resulting in one surface being positively and the other one negatively charged. With that we’ve just generated an ElectroStatic charge!
The amount generated varies and is affected by materials, friction, area of contact and the relative humidity of the environment. At lower relative humidity, charge generation will increase as the environment is drier. Common plastics generally create the greatest static charges.

ELECTROSTATIC DISCHARGE (ESD)

If two items are at the same electrostatic charge or equipotential, no discharge will occur.
However, if two items are at different levels of ElectroStatic charge (i.e. one is positively and the other one negatively charged), they will want to come into balance. If they are in close enough proximity, there can be a rapid, spontaneous transfer of electrostatic charge. This is called discharge or ElectroStatic Discharge (ESD). Examples in daily life:

  • Lightning, creating lots of heat and light
  • The occasional zap felt when reaching for a door knob
  • The occasional zap felt when sliding out of a car and touching the door handle

Feeling the Zap when touching a doorknobHave you felt the zap before?

In a normal environment like your home, there are innumerable ESD events occurring, most of which you do not see or feel. It takes a discharge of about 2,000 volts for a person to feel the “zap”. It requires a much larger ESD event to arc and be seen (e.g. lightning). While a discharge may be a nuisance in the home, ESD is the hidden enemy in a high tech manufacturing environment. Modern electronic circuitry can be literally burned or melted from these miniature lightning bolts. ESD control is therefore necessary to reduce and limit these ESD events.

 TYPES OF ESD DEVICE DAMAGE

ESD damage to electronic components can lead to:

  • Catastrophic Failures
  • Latent Defects

Catastrophic Failure

Catastrophic failure causes a failure in an ESD sensitive item that is permanent. The ESD event may have caused a metal melt, junction breakdown or oxide failure. Normal inspection is able to detect a catastrophic failure.

Latent Failure

A latent defect can occur when an ESD sensitive item is exposed to an ESD event and is partially degraded. It may continue to perform its intended function, so may not be detected by normal inspection. However, intermittent or permanent failures may occur at a later time.

COSTLY EFFECTS OF ESD

A catastrophic failure of an electronic component can be the least costly type of ESD damage as it may be detected and repaired at an early manufacturing stage.
Latent damage caused by ESD is potentially costlier since damage occurs that cannot be felt, seen or detected through normal inspection procedures. Latent defects can be very expensive as the product passes all inspection steps and the product is completed and shipped. Latent defects can severely impact the reputation of a company’s product. Intermittent failures after shipping a product can be frustrating, particularly when the customer returns a product, reporting a problem which the factory again fails to detect. It consequently passes inspection and the product is returned to the customer with the problem unresolved.

ESD Damage to a PCB

The worst event is when the product is installed in a customer’s system, and performs for a while and then performs erratically. It can be very expensive to troubleshoot and provide repairs in this situation.
One study indicated the cost to be:

  • £7 Device
  • £7 Device in board – £700
  • £7 Device in board and in system – £7,000
  • £7 Device and system fails – £70,000

Industry experts have estimated average electronics product losses due to static discharge to range from 8 to 33%. Others estimate the actual cost of ESD damage to the electronics industry as running into the billions of dollars annually.

CONCLUSION

It is critical to be aware of the most sensitive items being handled in your factory. As electronic technology advances, electronic circuitry gets progressively smaller. As the size of components is reduced, so is the microscopic spacing of insulators and circuits within them, increasing their sensitivity to ESD. As you can predict, the need for proper ESD protection increases every day.
If you’re new to ESD and ESD Control, we suggest you read this article for more information on how to protect your ESD sensitive devices.

4 Reasons why you should be using Protektive Pak® Material

Last time we talked about what to look out for when using containers to transport or store ESD sensitive items. Have you implemented our 3 tips yet?
Today we thought we’d cover a topic that ties in nicely with last week’s post: Protektive Pak® Impregnated Corrugated Material. Never heard of it? Don’t panic – we’re here to help! Protektive Pak® Material is made from static dissipative impregnated corrugated material with a buried shielding layer – it provides static shielding to protect ESD sensitive items from ElectroStatic charges, and ElectroStatic Discharges [ESD].

Introduction to Protektive Pak® Material

So now you’re probably wondering what’s different about this type of material – loads of companies out there offer similar products, right? That’s true – BUT what makes Protektive Pak® Material so unique is that its ESD properties are manufactured into the liners of the material itself. Many other materials have a coating or paint applied that gives them their ESD properties. This in itself is not a problem. However, it becomes an issue if the outer layer of your ESD container is damaged.

Protektive Pak Inplant HandlerProtektive Pak® Inplant Handler – for more information click here

Have you ever removed tape from your ESD container or accidently pierced the surface with a sharp object? If you have, chances are you’ve found the black coat give way to a lighter brown material. That’s your ESD properties gone potentially damaging your ESD sensitive devices inside the ESD container. This will not happen with Protektive Pak® Material – even if the outer layer is damaged, your ESD sensitive items are still protected. Not convinced? Check-out this video.

 PinkBlackPPKProtektive Pak® Circuit Board Shippers – for more information click here

4 Reasons why you should be using Protektive Pak® Material

Independent ESD tests have proven that Protektive Pak® Impregnated Corrugated Material is superior! Click here to see the full test report. The bottom line is:

  1. Protektive Pak® impregnated corrugated material has a buried shielding layer.
  2. Protektive Pak® impregnated corrugated material equals or exceeds the discharge shielding capabilities of a coated box.
  3. Protektive Pak® impregnated corrugated material has discharge shielding capabilities equal to a metal-out shielding bag.
  4. Protektive Pak® impregnated corrugated material meets the ANSI/ESD S541 recommendation, avoiding rapid discharge when contacting ESD sensitive items – coated boxes DO NOT.

 

Comparing Impregnated Corrugated Protektive Pak® and Coated Materials

Now that we have talked about the advantages of Protektive Pak® Material – how exactly does it compare to the more common coated materials out there on the market? The below table provides a summary:

Impregnated vs. Coated Material
1 CONSISTENT QUALITY
Manufactured by one paper mill with computerized control, resulting in consistent high quality.
Manufactured without computer controls and applied at various geographical locations, resulting in quality variations.
2 STATE-OF-THE-ART TECHNOLOGY
Carbon is added during the paper making process. The paper is a 6-layer process. The top surface layer is static dissipative, measuring 107 to 109 ohms. The conductive layer is in the 5th layer from the surface measuring <104 ohms.
Material is coated or printed with carbon loaded black ink which is then coated with a clear sealer to help coating stay on. Shielding layer is very close to surface and high carbon content can bleed through. Result is very poor and inconsistent static dissipative effectiveness.
3 LOWER SULPHUR CONTENT
Manufactured from 100% recycled paper with consistently low sulphur content.
Manufactured from either recycled or virgin paper or a combination of both. sulphur content may be low or high which can cause corrosion to leads and circuits.
4 GREATER DURABILITY
1,000 Times Thicker: Abrasion tests have shown no loss in particles at 100 cycles, only 1% loss for 200 cycles and 60% loss for 500 cycles.
Tests have shown a 50% loss in particles in only 10 cycles and a 100% loss in 100 cycles.
5 SLOWS RAPID DISCHARGE
Burying the conductive layer under a dissipative surface reduces the potential for a rapid discharge when contacted by a charged device.
A very conductive surface that may pose a charged device model (CDM) ESD danger to components stored in open bin boxes, in-plant handlers, shippers, totes, nesting trays, etc.
6 BETTER SHIELDING EFFECTIVENESS
Shielding effectiveness is equal to or greater than coated conductive materials.
Some coated products shield poorly due to inconsistent application procedures by some manufacturers.
7 BETTER VALUE
More durable structure, 1,000 times thicker, which consistently shields your product from ESD, is also safer and better for the environment.
Simple structure which can lack consistency of ESD shielding, durability and safety.
PPK Material Carbon Coated Material
Graphite Printed Material

All microscopic photos are approximately the same scale. A PDF version of the above table is available here.

3 Tips for using Containers to store & transport your ESD sensitive devices

Do you use containers to store or transport ESD sensitive items? If so, make sure to read on! We’ve compiled a list of 3 tips you should follow to make sure your ESD sensitive devices are fully protected. So let’s get started:

1. Use shielded containers!

ElectroStatic Discharge (ESD) is silent, quick and potentially lethal to electronic parts. When electronic parts are not properly handled during manufacturing, assembly, storage or shipping, damage from ESD can reach into the millions of dollars each year.

For an ESD control container to be effective and meet EN 61340-5-1 Edition 2.0 2016-05, the requirements are:

  • Surface resistance 1 x 104 to < 1 x 1011 ohms per IEC 61340-2-3
  • Discharge Shielding (energy penetration) < 50 nanoJoules per IEC 61340-4-8

Shielded versus Non-Shielded Containers

We know what you’re saying now: “But non-shielding containers are so much less expensive than ESD shielding containers.” Unfortunately, it’s not as simple as that.

Non-shielding containers might be cheaper, but they are not less costly when it comes to handling ESD sensitive items. Anytime ESD sensitive parts and assemblies are handled, regular containers are not a sound option, even part of the time, as the risk of ESD damage is always lingering. As a result, costs will be incurred, either via ESD damage or as an additional investment in discharge shielding packaging and material handling containers.

The disadvantages of cross-using shielding and non-shielding containers include:

  • Increased cost
  • Risk from ESD damage
  • Handling inconvenience

The cost of a discharge shielding container is far less than the cost associated with damaged parts or extra handling that result with a “less expensive” non-shielding container. So the bottom line is: ALWAYS go for shielded containers!

2. Put a lid on it!

A Faraday Cage effect can protect ESDS contents in a container with a shielding layer (this is what a shielding bag has). This Faraday Cage effect protects people in real life when a lightning bolt strikes an airplane or automobile with the charge residing on the outer metal fuselage or car body.

The Faraday cage effect causes charges to be conducted around the outside surface of the conductor. Since similar charges repel, charges will rest on the exterior.

Put a lid on it!To complete the enclosure, make sure to place lids on boxes or containers. Packaging with holes, tears, or gaps should not be used as the contents may be able to extend outside the enclosure and lose their shielding as well as mechanical protection.

Outside an EPA Inside an EPA

Outside the ESD protected area (EPA), the lid needs to be in place to provide the ESD control property electrostatic discharge shielding.  Per Packaging Standard EN 61340-5-3 clause 5.3 Outside an EPA: “Transportation of sensitive products outside of an EPA shall require packaging that provides both:
a) dissipative or conductive materials for intimate contact
b) a structure that provides electrostatic discharge shielding.”

Inside the EPA, it would still be a good idea to have the lid in place, but it is not a requirement. When using a shielded container, electrostatic charges and discharges take the path of least resistance. Packaging with the discharge shielding property protects ESD sensitive items from the effects of static discharge that are external to the package.

3. Choose the right foam!

Generally speaking, there are 2 types of foam available with shielded containers: pink static dissipative and black conductive foam. Depending on your application and/or budget you should choose the one best suited for you.

Pink Foam vs. Black FoamThere are resistance differences but the key is that the black foam resistance is inherent and longer lasting:

Pink Static Dissipative Foam Black Conductive Foam
Static dissipative polyurethane <1011 ohms Conductive polyurethane 1 x 103 to < 1 x 105 ohms
Antistatic low charging – minimising electrostatic charge generation Permanently conductive
Will lose electrical properties over time Will not lose electrical properties
When exposed to the environment, the foam will discolour (turn yellow) over time Foam will not discolour over time
Economical Higher initial investment; better value for long term applications
Ideal for short term use and/or one-time shipments Ideal for storing or transporting ESDS over a prolong period of time, and reusing the container
Not recommend for lead insertion applications Not recommended in applications where Static Dissipative properties are required
Easy to adapt for custom uses by die-cutting, laminating, etc.
Non-contaminating, non-corrosive, and non-sloughing

 

We hope you found this post helpful and informative – let us know if you have any requests for future blog posts.

Are the tools and accessories on your workbench ESD safe? – Part 2

Last week we talked about why insulators in your ESD Protected Area (EPA) can cause problems and started creating a list of the most commonly used insulative items that you should replace with ESD safe alternatives. Missed the post? Catch-up here.

So let’s continue with our list:

Dispensing bottles

If you work with solder irons or perform various cleaning tasks at your ESD workstation, you will likely be using water or some sort of cleaning agent. Where do you store those liquids? Plastic cups? If so, that’s a BIG no-no and if you’re truly committed to your ESD Control Programme, you should be switching to ESD protective bottles immediately. ESD dispensing bottles come in all sorts of sizes, colours and with different pumps or spouts. Whatever type you need for your application, you will generally be able to find an ESD alternative.

ESD Dispensing BottlesExamples of ESD safe dispensing bottles – more information

ESD dispensing bottles are dissipative and high-quality types will have no migratory additives which reduces the chance for contamination from the bottle.

Brushes

We covered brushes in a previous post so don’t want to repeat everything here. If you want more information on regular brushes and the problems they cause in an EPA, follow-up here.

Examples of dissipative and conductive brushes – more information

Summing-up the most important points in regards to using brushes in your ESD protected area (EPA):

  • Use dissipative or conductive brushes in an EPA.
  • All portions of the brush (handle and bristles) need to be conductive/dissipative.
  • Operators need to be grounded during use.
  • Choose dissipative bristles if your product/assembly may be holding a charge and Charged Device Model (CDM) failures are a concern.

Probes

Probes are ideal for opening plastic cases such as MP3 players, cell phones, laptops, etc. and for popping out batteries. They are also used for holding, probing, and manipulating wires and components during assembly and soldering. ESD safe versions are made of nylon, wood or stainless steel.

Examples of ESD safe probes – more information

The hygroscopic (readily accepts moisture) properties of Nylon will make this tool suitable for use around ESD sensitive components after a few minutes of handling the tool with bare hands. If used with gloves in a clean environment the tools must be dipped in a topical antistatic solution before use in sensitive areas. Topical treatment should be repeated at six month intervals. Without exposure to moisture or antistatic treatment, Nylon is in the insulative resistance range and charges will not be removed to ground.

Wood is considered a safe material for use in ESD sensitive areas. It is hygroscopic and has a low propensity for triboelectric charge generation under most conditions.

Any charge on a stainless steel probe can be grounded when it is placed on an ESD protected work surface.

Waste bins and bin liners

ESD safe waste bins are generally conductive and are useful in ESD Protected Areas where waste accumulates and cannot be conveniently removed except in bulk. By placing them on a grounded floor, electrostatic charges are removed to ground. They do not require separate grounding when placed on a grounded surface.

Examples of Waste Bins and Bin LinersExamples of waste bins and bind liners – more information

If you’re currently using standard bin liners, replace those with non-tribocharging ESD versions. Even at low humidity they do not become charged with static electricity and are designed for use in ESD protected areas where electrostatic sensitive devices are present.

 

And there you have it – a list of of tools and accessories that you should be replacing with ESD protective alternatives. Can you think of any others? Let us know in the comments!

Are the tools and accessories on your workbench ESD safe? – Part 1

In a previous post we talked about 2 types of materials you should be aware of in an ESD Protected Area (EPA): insulators and conductors. We learned that one way to protect your ESD sensitive devices (ESDs) is to replace regular insulative items with an ESD protective version. But exactly what items can and should you replace? Well, that’s what today’s post is all about. We put together a list of the most common items used at a workstation and explain in more details why they should be replaced and what options you have.

Conductors and Insulators

Materials that easily transfer electrons (or charge) are called conductors and are said to have “free” electrons. Grounding works effectively to remove electrostatic charges from conductors to ground.

Materials that do not easily transfer electrons are called insulators or non-conductors. An insulator will hold the charge and cannot be grounded; therefore, the charge cannot dissipate in a controlled way. This could lead to static damage of nearby sensitive components as there can be a rapid, spontaneous transfer of electrostatic charge.

So how do you control static electricity in the workplace? Easy – just follow these principles:

  • Remove all unnecessary non-conductors,
  • Replace all non-conductive materials with dissipative or conductive materials and
  • Ground all conductors.

So what insulators in your EPA can be replaced with dissipative of conductive materials? Here is a list of the most commonly used insulative items and their replacements:

Document handling

Paper is everywhere in the workplace and an ESD Protected Area is no exception. The problem with regular paper is that it is insulative but tends to be low charging because it is hygroscopic (readily absorbs moisture). The primary concern with paper is placing ESD sensitive items on the paper interfering with the path-to-ground of the grounded ESD mat. Best practice is to use dissipative paper or have regular insulative paper in dissipative document holders or wallets.

Dissipative Self-Stick NotesDissipative self-stick notes – more information

EN 61340-5-1 “Paperwork inside the EPA shall either be kept in containers conforming to the requirements of table 2 or shall not generate a field in excess of that specified in paragraph 5.3.5 (ESDS should not be exposed to electrostatic fields in excess of 10 kV/m).

There are a number of products available on the market that can assist with handling documents/paper in ESD Protected Areas:

  1. ESD safe document holders and wallets
    Document wallets and holders are designed for use within ESD Protected Areas in accordance with EN 61340-5-1. They are static dissipative which means charges are removed to ground when placed on a grounded working surface or handled by a grounded operator.

    Examples of ESD safe document wallets and holders – more information

     

  2. ESD safe ring binders and clipboards
    Ring Binders and clipboards are designed to replace high charging insulative regular binders for use within ESD protected areas. They come in different widths with different ring sizes and 2 or 4 rings. Just like document holders/wallets they are static dissipative so charges are removed to ground when placed on a grounded working surface or handled by a grounded operator.

    Examples of Ring Binders and ClipboardsExamples of ESD safe ring binders and clipboards – more information

     

  3. ESD safe letter trays
    Generally conductive, any electrostatic charges on letter trays are removed to ground when the tray is placed on a grounded working surface or contacted by a grounded operator. They do not require separate grounding when laid on a grounded surface.

    Letter TrayExamples of ESD safe letter tray – more information


Cups

We all love our cup of tea or coffee in the morning and most of us have water bottles on stand-by throughout the day to stay hydrated. But do you know how much charge a foam or plastic cup generates? Well, let’s just say it’s enough to damage your precious components! The answer: ESD safe drinking cups and water bottles. There aren’t too many options out there so make sure you do your research before purchasing.

ESD safe water bottles are generally dissipative so charges are removed when placed on a grounded surface or handled by a grounded operator.

MENDA Drinking CupMenda drinking cup – more information

One option for a drinking cup (for hot drinks) is the MENDA insulated drinking cup. It is low charging and the stainless steel portion is grounded when picked up by a grounded operator or when placed on a grounded ESD worksurface.

 

Read the follow-up post here.

 

Choosing the right type of ESD Tape for your Application

Most people are aware of regular high charging tape in ESD Protected Areas (EPAs) and know that these should be replaced with ESD tape. However, there is a lot of confusion out there as to what type of ESD tape should be used for what application. So we’ve put together an overview of the different types of ESD tape available and when to use them.

All generators of electrostatic charges, such as untreated plastic films, foams, synthetic fibres, adhesive tapes, etc., must be prohibited and should be kept away from the EPA [ESD protected area].” (EN 61340-5-2 section 6)
EPA should never have any electrostatic generative adhesive tapes or labels, as these can cause very high potentials when applied or stripped off.” (EN 61340-5-1 section 7.4)

ESD Cellulose Tape

Technical information:

  • Colour: generally transparent; some types have a blue, red, green or yellow hue
  • Film construction: cellulose

Cellulose TapeExamples of ESD Cellulose Tape – find out more

Application:

  • Sealing ESD bags and other ESD packaging/containers
  • General purpose ESD tape applications
  • Secure (bundle) IC DIP tubes
  • Prevents damage to sensitive electronic components in manufacturing
  • Ideal for holding notes, work orders or instructions in offices, ESD workstations, or for general purpose
  • Ideal for conformal coating or holding and sealing supplies in manufacturing
  • Ideal in packaging for container sealing, static shielding bag closure and holding DIP tubes
  • Use with ESD symbols for ESD awareness

ESD Conductive Shielding Grid Tape

Technical information:

  • Colour: tan/brown with black grid pattern
  • Film construction: antistatic copolymer with conductive grid layer

Conductive Shielding Grid TapeExamples of ESD Conductive Shielding Grid Tape – find out more

Application:

  • For applications requiring EMI shielding
  • Use in areas where the generation of static electricity is of concern
  • Secure (bundle) IC tubes
  • Cover external plugs, holes or connector pins on electronic chassis (black boxes, etc.) during transportation or storage

ESD High-Temp Masking Tape

Technical information:

  • Colour: natural
  • Film construction: crepe paper

High-Temp Masking TapeExamples of ESD High-Temp Masking Tape – find out more

Application:

  • Silk screening applications
  • Masking application in spray and brush painting, non-staining
  • Protective purposes in manufacturing processes, strips clean
  • For securing polyethylene sheeting to walls during painting
  • For OEM repair shops
  • Use in applications masking PCBs gold features for wave soldering or soldering under 150°C
  • Thick conductive adhesive excellent for conformability to protect critical PCB features
  • Easily handles high temperatures of wave soldering without leaving significant residue
  • Handles temperatures found in test and burn-in ovens
  • For best results, apply to board using a rubber roller

ESD High-Temp Polyimide Tape

Technical information:

  • Colour: brown opaque
  • Film construction: polyimide

High-Temp Polyimide TapeExamples of ESD High-Temp Polyimide Tape

Application:

  • Ideal for masking gold leads and other components on boards populated with sensitive integrated circuits
  • Thick conductive adhesive excellent for conformability to protect critical PCB features
  • Masking off PCBs for IR reflow ovens or wave soldering under 300°C for ~ 10 seconds

Aisle or Floor Marking Tape

Technical information:

  • Colour: yellow with black printing
  • Film construction: PVC

FloorMarkingTapeExamples of Floor Marking Tape – find out more

Application:

  • Use to mark off floors designating ESD Protective Areas
  • Can be used as area signs
  • Note: floor marking tape has no ESD control properties

Packaging Tape

Technical information:

  • Colour: yellow with black printing
  • Film construction: PVC

Packaging TapeExample of Packaging Tape – find out more

Application:

  • Suitable for sealing secondary packaging such as cartons
  • Note: packaging tape has no ESD control properties

 

ESD tapes come in all sorts of widths and lengths so make sure you check the specifcations to ensure your chosen tape will work for your application. And once you’ve picked the right kind of ESD tape, don’t forget an ESD tape dispenser to go with it…

 

The role of ESD lab coats in ESD Protected Areas

Most people tend to believe that if a person is wearing a wrist strap, an ESD lab coat (also known as smocks) is redundant. This is due to the belief that any charge on the person or their clothes would find its way to ground via the wrist strap. This is a very common misconception and today’s blog post will explain in more detail why you should be considering the use of ESD lab coats in your ESD Protected Area (EPA).

Purpose of ESD lab coats

Although the ESD Standard does not require ESD lab coats, they are a very practical. Some even believe, ESD lab coats represent the single most important step to demonstrate commitment to an ESD control programme.
As we have learnt previously, all process essential insulators should be kept at a minimum distance of 31cm from ESD susceptible items. Clothing, particularly when made from synthetic fibres, are significant charge generators. Worse for ESD control, the fabric is an insulator so the result can be very threatening: an isolated charged insulator which cannot be grounded.
An insulator will not let charges flow and will therefore hold the charge until either neutralised over time (naturally over hours or days) or with an air ioniser (artificially under a few seconds).
In the meantime, your sleeves, waist, etc. may have several thousand volts (a very significant electric field to expose nearby conductors) that may induce charges on nearby isolated conductors. This is the main reason people wear ESD lab coats: so they can shield the insulative clothing and minimise the electric fields generated from their clothing.

Examples of lab coats – for more details click here

The ESD risk provided by everyday clothing cannot be easily assessed. The current general view of experts is that the main source of ESD risk may occur where ESDS [ESD sensitive items] can reach high induced voltage due to external fields from the clothing, and subsequently experience a field induced CDM [Charged Device Model] type discharge. So ESD control garments may be of particular benefit where larger ESDS having low CDM withstand voltage are handled, and operators habitually wear everyday clothing that could generate electrostatic high fields.” [CLC TR 61340-5-2 2008 User guide Garments clause 4.7.7.1 Introductory remarks]

ESD lab coat properties

Most lab coats are constructed of a dissipative material which incorporates texturised polyester and carbon nylon fibres. The conductive nylon fibres are woven in a chain-link design throughout the material, providing continuous and consistent charge dissipation.

ESD lab coats are an ESD protective product that should possess the following ESD control characteristics:

  • Antistatic low-charging so they minimise the generation of electrostatic charges;
  • Dissipative so when grounded they will remove charges to ground;
  • Shielding creating a “Faraday Cage” effect so they will restrict charges generated on the user’s clothing to the inside of the ESD lab coat and
  • Groundable so the user can easily and reliably connect them to ground.

Installation and grounding of ESD lab coats

Follow the directions below for proper installation and grounding of the ESD lab coat:

  • Put on the lab coat and fasten all of the snaps on the front of the lab coat, making sure that clothing is not exposed outside of the lab coat.
  • Throughout use, it is essential that the conductive cuff is in intimate contact with the wrist skin. The conductive cuff should never be allowed to be pulled up and over the shirt sleeve.
  • Ground the ESD lab coat. A popular way to ground an ESD lab coat is with a coiled cord either attached to a snap on the waist area of the lab coator via a wrist strap snapped to the inside cuff of an ESD lab coat. If none of these methods are suitable, the lab coat should be grounded via the person’s wrist removing charges via ESD footwear to ESD protected flooring.

This slideshow requires JavaScript.

Wearing your ESD lab coat correctly

Garments on which high levels of static electricity can be generated are one of the causes of ESD damage. It is important that such charged garments do not come into contact with ESDS. The covering garments need to be grounded, either through direct contact with the wearer’s skin, or by alternative means such as being electrically connected to a wrist strap. It is important that the ESD protective garment sleeves cover the end of the inner garment sleeves.” [EN 61340-5-2 paragraph 5.2.5.]

Grounding lab coat using snap at waistGrounding a lab coat using the snap at the waist

ESD lab coats are a conductor and therefore should be grounded. If not grounded, the ESD garment can be a potentially threatening isolated charged conductor. If an operator is wearing a lab coat but is not electrically connecting the lab coat to either their body’s skin or ground, then charges on the lab coat may have nowhere to go or discharge to.

Testing of ESD lab coats

Panel-to-panel conductivity is essential to ensure portions of the lab coat are not left as isolated charged conductors. A Resistance Test Kit can quickly measure resistance of the fabric and ensure panel-to-panel conductivity by placing five pound electrodes on different fabric panels.

Testing panel-to-panel conductivity of your ESD lab coatTesting panel-to-panel conductivity using 222635

To ensure that the fabric is low tribocharging, a Static Field Meter can be used to measure charges generated by causing contact and separation with other materials. In addition, the Static Field Meter can demonstrate shielding by measuring a charged object and then covering the charged item with the ESD lab coat. Being shielded the measured charge should be greatly reduced.

Cleaning of ESD lab coats

The proper method to clean a lab coat is to wash the garment in cool or warm water, tumble dry with low heat or hang dry. Do not bleach your ESD lab coats! Make sure you only use non-ionic softeners and detergents when laundering.

Please also note that lab coats should not be altered in any way. The lab coats effectiveness is in fully covering the human body and street clothes – especially at the wrists and front of the body. Altering the lab coat in any way will nullify its effectiveness.

The typical useful and effective life of a lab coat under normal wearing and recommended washing conditions is a minimum of 75 washings.

 

Questions for you: Do you use lab coats? If so, what’s the reason you started using them?

Checking your ESD Control Products – Part 2

Today’s post concludes our 2-part series on periodic verifcation. If you have missed the first part, you can catch-up on it here. As a reminder, it is recommended to regularely check all ESD Protected Area (EPA) products to ensure they are working correctly. After covering working surface matting and wrist straps in last week’s post, we’ll jump right in to discuss the remaining components in your EPA.

Floor Matting
A flooring / footwear system is an alternative for personnel grounding for standing or mobile workers. Foot grounders quickly and effectively drain the static charges which collect on personnel during normal, everyday activities. Foot grounders should be used in conjunction with floor surfaces which have a surface resistance of less than 1010 ohms.
As ESD floors get dirty, their resistance increases. For optimum electrical performance, floor matting must be cleaned regularly using an ESD mat cleaner, such as Reztore™ Surface & Mat Cleaner. Do not use cleaners with silicone as silicone build-up will create an insulative film on the surface.
Dissipative floor finish can be used to reduce floor resistance. Periodic verification will identify how often the floor finish needs to be applied. As the layer(s) of dissipative floor finish wear, the resistance measurements will increase. So, after some amount of data collection, a cost effective maintenance schedule can be established.

Testing floor mattingTesting floor matting

Floor matting can be checked using a resistance meter. Surface resistance meters are designed to measure resistance point-to-point (Rp-p) or surface to ground (Rg) in accordance with EN 61340-5-1 Electrostatics and its test method IEC 61340-2-3.

Footwear
ESD Shoes or Foot Grounders play an essential part in the flooring/footwear system. For more information on how to ground moving personnel effectively, check this post.
Before handling ESD sensitive devices, visually inspect your ESD footwear for any damage. Just like wrist straps, footwear should be checked while being worn using a wrist strap/footwear tester.

Checking foot groundersChecking foot grounders using 222567

Records of each test should be kept. Analysis and corrective action should take place when a footwear tester indicates a failure. Footwear needs to be checked daily.

ESD Packaging
Re-using shielding bags is acceptable as long as there is no damage to the shielding layer. Shielding bags with holes, tears or excessive wrinkles should be discarded.

Using ESD shielding bagsMake sure your ESD shielding bags are un-damaged

It is up to the user to determine if a shielding bag is suitable for re-use or not. The testing of every bag before re-use is not practical. Many companies will discard the shielding bag once used and replace it with a new one. Others will use a system of labels to identify when the bag has gone through five handling cycles:

  • Non-reusable labels are used that require the label be broken to open the bag.
  • The bag is then resealed with a new label.
  • When there are five broken labels, the bag is discarded.

The same principle applies to other ESD packaging, e.g. component shippers.

Ionisers
Ionisers are intended to neutralise static charges on insulators thereby reducing their potential to cause ESD damage. However, poorly maintained ionisers with dirty emitter pins and out-of-balance ionisers can put a charge on ungrounded items.
Remember to clean ioniser emitter pins and filters regularly. You can now even purchase ionisers that will alarm when emitter pins need to be cleaned or the ioniser is out of balance.

Checking ionisersChecking ionisers using 50598

The EMIT Ionisation Test Kit 50598 allows the Digital Static Field Meter 50597 to be used to measure the offset voltage (balance) and charge decay of ionisation equipment. The Test Kit also includes a Charger used to place a ±1000V charge on the 50567 Conductive Plate, making it possible to measure the discharge times of air ionisation equipment per ANSI/ESD SP3.3 Periodic Verification of Air Ionizers.

Wrist Strap/Footwear and Resistance Testers etc.
So you check your wrist straps and/or footwear and bench and/or floor matting regularly. But have you remembered the testers themselves? What good do all the checks do, if the testers you use are out-of-spec and show you incorrect results?
Yearly calibration is recommended – many manufacturers offer a calibration service or alternatively you can purchase calibration units from them and perform the calibration yourself.

 

So there you have it – a list of the most commonly used products in your ESD Protected Area (EPA) that you should check on a regular basis.
Questions for you: Do you have a verfication plan in place? If so, how often do you check your ESD protection products?

Checking your ESD Control Products – Part 1

Today we want to talk about a subject many users forget about when it comes to ESD protection: periodic verification.
Whilst many people understand the basic concepts of ESD and as a result insist on a properly equipped ESD Protected Area (EPA), they then forget all about it. They use the same products day-in, day-out, year after year, without knowing if their products are actually still working properly.
So today we want to look at the most common products in your EPA that you should be checking on a regular basis. And because there are quite a few product groups to discuss, we have split this post in 2 parts – we don’t want to scare you away with a never-ending blog post…

Why periodic verification?
Each component in an ESD protected area (EPA) plays a vital part in the fight against electrostatic discharge (ESD). If just one component is not performing correctly, you could damage your ESD sensitive devices potentially costing your company money. The problem with many ESD protection products (think wrist straps!) is that you can’t always see the damage. Just by looking at a coiled cord that has no visibly damage to the insulation you would not know if the conductor on the inside is damaged. That’s where periodic verification comes into play.
ESD protected area (EPA) products should be tested:

  1. Prior to installation to qualify product for listing in user’s ESD control plan.
  2. During initial installation.
  3. For periodic checks of installed products as part of IEC 61340-5-1 Edition 1 2007-08 clause 5.2.3 Compliance verification plan.

It’s #3 we will be focusing on in this 2-part series.

Worksurface Matting
The purpose of ESD bench matting is to ensure that when charged conductors (conductive or dissipative) are placed upon the surface, a controlled discharge occurs and electrostatic charges are removed to ground. However, this only occurs if the ESD work surface is actually connected to ground. If the matting is out-of-spec, not grounded at all, the stud on the mat has become loose or the ground cord has become disconnected, charges cannot be removed.
Many companies use a daily checklist, which includes the operator having to verify that ground cords are firmly connected.
Remember to regularly clean your bench matting to maintain proper electrical function (e.g. Reztore Surface and Mat Cleaner). Do not use cleaners with silicone as silicone build-up will create an insulative film on the surface.
The company’s compliance verification plan should also include periodic checks of work surfaces measuring:

  • Resistance Point-to-Point (Rp-p) and
  • Resistance-to-ground (Rg).

222643UseTesting a working surface using 222643

Surface resistance testers can be used to perform these tests in accordance with EN 61340-5-1 Electrostatics and its test method IEC 61340-2-3; if these measurements are within acceptable ranges, the worksurface matting and its connections are good.

Wrist Straps
As discharges from people handling ESD sensitive devices cause significant ESD damage, the wrist strap is considered the first line of ESD control.
Before handling ESD sensitive items, you should visually inspect the wrist strap to see if there are any breakages etc. The wrist strap should then be tested while worn using a wrist strap tester. This ensures all three components are checked: the wrist band, the ground cord (including resistor) and the interface with the wearer’s skin. Records of each test should be kept. Wiggling the resistor strain relief portion of the coil cord during the test will help identify failures sooner. Analysis and corrective action should take place when a wrist strap tester indicates a failure.

222566useChecking wrist straps using 222566

It is recommended that wrist straps are checked at least daily. An even better solution to daily wrist strap checks is the use of continuous monitors. They will alarm if the person or work surface is not properly grounded.

A note on worksurface matting and wrist straps: if you are using earth bonding points, earth bonding bars etc. to ground the operator and/or bench matting, remember to inspect and test those regularly as well (every 6 months for example).

Make sure you read the follow-up post here.

 

 

What is an ESD Protected Area (EPA)?

We’ve mentioned the term “ESD Protected Area (EPA)” many times in previous blog posts but what exactly is it?

  • Why do you need an EPA?
  • How can you identify one?
  • And most importantly what do you need to create an EPA?

This posts will help shed some light on these very common questions so let’s go!

Definition of an ESD Protected Area (EPA)

An ESD Protected Area (EPA) is a defined space within which all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. This is achieved by simply using only ‘groundable’ materials (i.e. materials with an electrical resistance typically of less than 109 ohms) for covering of surfaces and for the manufacture of containers and tools. All surfaces, products and people are bonded to Ground. Bonding means linking, usually through a resistance of between 1 and 10 megohms. Movable items (such as containers and tools) are bonded by virtue of standing on a bonded surface or being held by a bonded person. Everything that does not readily dissipate charge must be excluded from the EPA.

Components of an EPAExample of an EPA

The user guide CLC/TR 61340-5-2:2008 defines an EPA as follows:
An ESD protected area (EPA) is an area that is equipped with the ESD control items required to minimize the chance of damaging ESD sensitive devices. In the broad sense, a protected area is capable of controlling static electricity on all items that enter that work area. Personnel and other conductive or dissipative items shall be electrically bonded together and connected to ground (or a common connection point when a ground is not available) to equalize electrical potential among the items. The size of an EPA can vary greatly. A protected area may be a permanent workstation within a room or an entire factory floor encompassing thousands of workstations. A protected area may also be a portable worksurface or mat used in a field service situation.” [CLC/TR 61340-5-2:2008 Use guide clause 4.6 Protected areas (EPA)]

An EPA could be just one workstation or it could be a room containing a number of different workstations.
So to sum-up, in an EPA you:

  • ground all conductors (including people),
  • remove all insulators (or substituting with ESD protective versions) or
  • neutralise process essential insulators with an ioniser.

Purpose of an ESD Protected Area (EPA)

Electrostatic Discharge [ESD] can damage components and products containing electronics. It is the hidden enemy in many high-tech factories. Often this damage cannot be detected by quality control inspections which can be very frustrating. ESD damage can adversely impact productivity, quality, product reliability and thus a company’s reputation and profitability.
An EPA is an area that has been established to effectively control ESD and its purpose is therefore to avoid all problems resulting from ESD damage. Operators need to understand and follow the basics of ESD control to limit the generation of electrostatic charges, limit and slow discharges in the EPA.

Identifying an ESD Protected Area (EPA)

An EPA needs to be identified as such. You can use products such as floor marking tape and/or signs which are designed to attract attention and deliver a clear message to personnel and visitors, i.e. “You are entering an ESD Protected Area” or “You are leaving an ESD Protected Area”.

EPA Sign
Example of an EPA Warning sign

Creating an ESD Protected Area (EPA)

In its simplest form, an EPA area is a basic workstation and consists of the following components:

  • an ESD working surface mat,
  • a grounding cord,
  • a wrist strap,
  • a coiled cord and
  • an Earth Bonding Point Plug (EBP Plug).

This slideshow requires JavaScript.

Set-up of a basic EPA – watch the video

To create an EPA:

  1. Bond the operator to the EBP Plug using the wrist strap and coiled cord.
  2. Connect the ESD working surface mat to the EBP Plug using the grounding cord.

By following the above two steps, each element connected to the EBP Plug (the surface and the operator) are kept at the same electrical potential and any electrostatic discharge (ESD) is being removed to ground via the EBP Plug. The EBP Plug provides a common ground point for grounding using protective earth. The plug fits into the mains supply socket, making a connection with the earth conductor only. In place of the live and neutral pins are moulded insulating plastic pins to allow positive location in the socket.

Do you have any questions for us? Let us know in the comments!

Follow

Get every new post delivered to your Inbox.

Join 44 other followers

%d bloggers like this: