Category Archives: Dual-Wire Continuous Monitors

Single-Wire vs. Dual-Wire Monitors

A wrist strap is arguably the best way to provide a safe ground connection to the operator in order to dissipate accumulated static charges with the purpose to prevent dangerous ESD exposure to sensitive ESD components.

Wrist straps must be tested to ensure that they are installed and working properly. On-demand or “touch” testers have become the most common testing method. On-demand testers complete a circuit when the wrist strap wearer touches a contact plate. One drawback with on-demand type testers is that they require a dedicated action by the wearer of the wrist strap to make the test. Also, knowing that the wrist strap has failed after the fact may possibly have exposed a highly sensitive or valuable assembly to risk. Continuous monitors eliminate the possibility of a component being exposed to ESD during the period that the wrist strap was not working properly.

Types of Wrist Straps
A wrist strap in general is a conductive wristband which provides an electrical connection to skin of an operator and, in turn, by itself is connected to a known ground point at a workbench or a tool. While a wrist strap does not prevent generation of charges, its purpose is to dissipate these charges to ground as quickly as possible. A single-wire wrist strap is comprised of one conductive surface contacting the wrist of an operator and providing one electrical connection to ground. A dual-wire wrist strap has two electrically-separate parts and two separate electrical connections to ground combined in one cord.

Wrist StrapA Wrist Strap

Both types of wrist straps – when in good condition and properly worn – provide equally good connection of operator to ground. A single-wire wrist strap is undoubtedly less expensive than its dual counterpart. However, for applications where sensitive components are being handled, the share of dual-wire wrist straps is growing rapidly. The reason for this is its ability to guarantee that the wrist strap indeed provides proper dissipation of charges on the operator. The way to ensure that the wrist strap is worn properly at all times is to utilise a continuous wrist strap monitor. These units monitor proper connection of the operator to ground and alarm should this connection fail. If you want to learn more about the benefits of continuous monitoring, we recommend you read this post.

Wrist Strap Monitors
Monitoring of single-wire and dual-wire wrist straps is fundamentally different:

  • Single-wire wrist strap monitors do not have a return signal path; the only physical parameter they can rely on is parasitic capacitance of operator’s body to ground.
  • Dual-wire wrist strap monitors measure the resistance of the operator’s wrist between the two halves of the wrist strap.

Single-Wire Wrist Strap Monitoring
1. AC Capacitance Monitors
The first constant monitors developed made use of the fact that a person can be thought of as one plate of a capacitor with the other plate being ground. The ground and the person are both conductors and they are separated (sometimes) by an insulator (shoes, mats, carpet, etc.) thus forming a capacitor. The combined resistance of the wrist strap and person forms a resistor so that the total circuit is a simple RC circuit. A tiny AC current applied to this circuit will cause a displacement current in the capacitance to flow to ground providing a simple way to make sure the person (capacitor) resistor (wrist strap) and coil cord are all hooked up. Any break in this circuit results in a higher impedance that can be used to trigger an alarm. AC capacitance monitors have a few drawbacks:

  • They do not provide a reliable way to know if the total resistance of the circuit is too low, i.e., if the current limiting safety resistor is shorted.
  • Simple AC capacitance monitors can be tricked into thinking the person is wearing the wrist strap when they are not. For example, laying a wrist strap and cord on a grounded mat will increase the shunt capacitance, which allows the monitor to show a good circuit even with the person out of the circuit. Forming the cord into a tight bundle or stretching it can also provide false readings.
  • Since the capacitance and therefore the impedance of the circuit will also vary with such things as the person’s size, clothing, shoe soles, conductance of the floor, chair, table mat, the person’s positions (standing or sitting), etc., these monitors often have to be “tuned” to a specific installation and operator.

This technology is still around today and is purchased by some because of its low cost and a lack of knowledge by the End-User. A big plus of this technology is the ability to use any standard single-wire wrist strap.

2. Wave Distortion Monitors
Many of the short comings of the capacitance and other earlier monitors have been overcome with the development of AC monitors that use the concept of the wrist strap wearer as a capacitor, but in a different way. The concept of the wrist strap and wearer as an RC circuit is not wrong but it is an over simplification. The total circuit actually contains resistance, capacitance and inductance (RCL). Each component value will vary with the environment, size of wearer, and the other factors that affect the accuracy of the AC capacitance monitor. What the wave form distortion monitor looks at is not the impedance level, but at the waveform generated by the circuit. Current will lead voltage at various points due to the combinations of resistance and capacitive reactance. (There is a negligible amount of inductive reactance from the coil cord.) By monitoring these distortions” or phase shifts the WDM will determine if the circuit is complete i.e.; the wearer is in the circuit and the total equivalent DC resistance is within specifications given a range of installations. Essentially, the unit will monitor the operator by sending a “signature” signal down the coil cord to the operator’s wrist. The operator acts as a load and will reflect that signal back to the monitor with a different signature. The monitor will then compare the reflected signature to its factory pre-set signatures. If the signal is within the “good” range, the operator passes and the monitor will continue its work. If the signature is “not” good, the monitor will go into an alarm-state to warn the operator to stop working and fix the problem.

Using ESD shielding bagsExample of a single-wire wave distortion monitor

Wave distortion monitors solves many of the problems of the other types:

  • It allows the use of any brand of single-wire wrist strap
  • It cannot be tricked like the AC capacitance units
  • It provides a warning if the lower (safety) resistance limits are compromised
  • The tiny amount of current required to generate the waveform has never caused reported skin irritation.

As an added bonus, wave distortion monitors will also detect an open circuit or bad ground all the way back to the building ground point. This is a fundamental advantage of this kind of monitor. Other monitors may insure that the operator is connected to the monitor. No other monitor automatically ensures that the user is actually grounded.

Dual-Wire Wrist Strap Monitoring
Dual-wire resistance monitors were developed to overcome some of the problems with the AC capacitance types. By providing a second path to ground (without relying on the capacitor above) we can apply a tiny DC current. It is then simple to measure the DC resistance of the circuit and alarm if that resistance goes too high (open circuit) or too low (the safety resistor is shorted). Thus, a two-wire monitor provides the same reliability as a touch tester and a simple, easy to understand measurement. The shortcomings with the AC capacitance monitor are eliminated.
Two-wire monitors require two wires to work. This means that the wearer must wear a dual-wire two-conductor wrist strap / coil cord which are more expensive than standard single-wire wrist straps.

Example of a Dual-Wire Continuous MonitorExample of a dual-wire monitor

There have been some reports that a constant DC voltage applied to the wristband causes skin irritations. This has been addressed in some models by pulsing the test current and in others by lowering the test voltage.

Conclusion
Dual polarity technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications, you build-in redundancy to have a backup if your primary option fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap would still need to be replaced immediately. So, while both single-wire and dual-wire wrist strap monitors help to dissipate accumulated charges on an operator, only dual-wire wrist strap solutions provide assurance of a proper dissipative path from operator to ground.

How to reduce the risk of damaging ESD sensitive devices in critical applications

Do your employees handle ESD sensitive high-end components that would be extremely expensive to replace if they failed? If so, you want to make sure that the risk of ESD damage is as low as possible. Today’s blog post will look at an option of protecting your critical applications: dual-wire wrist straps.

Introduction

In an ESD Protected Area (EPA) all surfaces, objects, people and ESD sensitive devices (ESDs) are kept at the same potential. This is achieved by simply using only ‘groundable’ materials that are then linked to ground.

Wrist straps are the most common personnel grounding device and are used to link people to ground. They are required if the operator is sitting.
A wrist strap is made up of two components:

  • a wrist band that is worn comfortably around your wrist and
  • a coil cord that connects the band to an Earth Bonding Point (EBP).

Wrist Strap
Components of a Wrist Strap

Advantages of Dual-Wire Wrist Straps

Dual-wire wrist straps have two conductors (compared to single-wire monitors which have only one conductor inside the insulation of the coil cord). They offer a reduced risk of damaging ESD sensitive devices because even if one conductor is severed, the operator still has a reliable path-to-ground with the other conductor. For that reason, they are generally used in critical applications. Dual-wire wrist straps:

  • eliminate intermittent failures and
  • extend the lifespan of wrist straps.

MagSnap 360 Dual-Wire Metal Wrist StrapExample of a Dual-Wire Wrist Strap – more information

Using Dual-Wire Continuous Monitors

For maximum benefits dual-wire wrist straps should be used together with dual-wire continuous monitors. So instead of connecting your coil cord to an Earth Bonding Point, you would connect it to your Continuous Monitor. The operator will be grounded and at the same time monitored. Continuous Monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. They detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components.
Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Example of a Dual-Wire Continuous MonitorExample of a Dual-Wire Continuous Monitor – more information

Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications you build-in redundancy in order to have a backup if your primary fails. That’s the concept. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap would still need to be replaced immediately.
Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“ [ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps]

Conclusion

And there you have it: if you do have a critical application, make sure you use dual-wire wrist straps together with dual-wire continuous monitors.

Continuous Monitors and ESD Control

Most of you have probably heard of continuous monitors before but do you know:

  • what exactly they do or
  • why you should be using a continuous monitoring system?

If your response to one (or both) of the above questions is ‘no’, you’re lucky because we’ll be answering them here today. If you already know the answers, why not read on anyway? You never know: you might be learning something new…

What are continuous monitors?

When talking about wrist straps a couple of weeks ago, we mentioned the need for periodic testing. Every day before each use, wrist straps need to be checked (while worn) to ensure they ground the operator correctly.

So imagine this scenario: you come to work in the morning, you test your wrist strap, it passes and you get to working on your ESD sensitive devices. 3 hours later, when you come back from your tea break, you test your wrist strap again and it fails. What to do? You don’t know if the wrist strap only just failed or if it failed right after your first test in the morning. How do you know if the devices you worked on all morning have been damaged? You don’t – after all latent defects are not visible and failures may only occur at a later time. That’s where continuous monitors come into play.

Continuous monitors provide operators with instant feedback on the status and functionality of their wrist strap. They detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components.
Continuous monitors come in different styles and sizes but are intended to be kept on your workstation. Some units just ‘sit’ on your bench; others are attached to your working surface matting; some can even be attached underneath the workbench so they don’t take away valuable workspace. Operators connect their wrist strap to the unit to allow for real-time continuous monitoring. If the wrist strap fails, the unit will alarm. Many continuous monitors also feature a parking stud providing a means for the operator to disconnect when leaving their workstation.

In our scenario above, had our operator used continuous monitoring while working on those ESD sensitive devices, they would have been alerted as soon as their wrist strap failed. The faulty wrist strap could have been replaced with a brand spanking new model from stock and everyone would have been happy – no ESD sensitive devices damaged and no unhappy customers.

Using continuous monitorsUsing continuous monitor 222603

Some continuous monitors even provide the ability to monitor working surface ground connections. “Discontinuity or over limit resistance changes cause the monitor to alarm. Worksurface monitors test the electrical connection between the monitor, the worksurface, and the ground point. The monitor however, will not detect insulative contamination on the worksurface.1

These days you can even find a number of ‘smart’ monitors on the market. They are connected to a computer and software records and displays failures to notify supervisors or engineers when a device needs attention (see the EMIT software as an example).

When and why you should be using continuous monitors

If your company manufactures products containing ESD sensitive items, you need to ask yourself “how important is the reliability of our products”? Sooner or later a wrist strap is going to fail. If your products are of such high value that you need to be 100% sure your operators are grounded at all times, then you should consider a continuous monitoring system.

The ESD Association produced the ESD TR 12-01 technical report which is entitled “Survey of Constant (Continuous) Monitors for Wrist Straps“. It contains some useful information: “Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.” “Wrist strap checkers are usually placed in a central location for all to use.  Wrist straps are stressed and flexed to their limits at a workstation.  While a wrist strap is being checked, it is not stressed, as it would be under working conditions.  Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.1

Types of continuous monitors

The impedance (or single-wire) constant monitor “… uses a detection circuit designed to reduce false alarms and eliminate adjustments. [It] use[s] the phase difference between current and voltage to detect changes in impedance of the cord, band and person. A very low AC voltage is used for constant sensing. Any standard [single wire] wristband and coiled cord can be used.”1

Single-wire monitorsExamples of single-wire monitors

Single-wire monitoring allows the use of any standard, single-wire wrist strap and coil cord. The monitor / wrist strap system life-cycle costs are significantly lower than dual-wire systems. While they would not be suitable for the most critical applications, single-wire continuous monitors are an economical way to monitor both the operator’s wrist strap and/or workstation surface.

Resistance (or dual-wire) constant monitors are “… used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire.  If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC.  Pulsed DC signals were developed because of concerns about skin irritation.  However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.1

Examples of dual-wire monitorsExamples of dual-wire monitors

Dual-polarity technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire continuous monitors provide redundancy; even if one dual-wire wrist strap conductor is severed, the operator still has a reliable path-to-ground with the other conductor.

 

Need help choosing the correct continuous monitor for your application? Make sure you check our continuous monitor selection chart.

 

 

1 ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps

Which Dual-Wire Monitor is Best for your Application?

Follow us on Twitter View our profile on LinkedIn YouTube GooglePlus

Following our previous post on Single-Wire Monitors, we will be looking at Dual-Wire Monitors in today’s post.
As a reminder, Continuous Monitors provide operators with instant feedback on the status and functionality of their wrist strap and/or workstation. They detect split-second failures when the wrist strap is still in the “intermittent” stage. This is prior to a permanent “open” which could result in damage to ESD sensitive components. Continuous Monitors verify the ground integrity of both the operator and ESD workstation and eliminate the need for periodic testing (and record keeping).

Dual Polarity Technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-Wire Continuous Monitors provide redundancy; even if one dual-wire wrist strap conductor is severed, the operator still has a reliable path-to-ground with the other conductor.

All Vermason Dual-Wire Monitors are compatible with EMIT SIM Software.

50515
The Dual Operator Programmable Monitor continuously monitors:
• Two operators wearing dual-wire wrist straps
• Two ESD worksurfaces

The Dual Operator Programmable Monitor uses low voltage steady-state DC continuous loop technology to continuously monitor dual-wire wrist strap functionality.50528

The Zero Volt Monitor continuously monitors:
• Two operators wearing dual-wire wrist straps
• Two ESD worksurfaces

The Zero Volt Monitor uses resistive loop technology that allows the operator to typically be near zero volts with respect to equipment ground.

50576

The Zero Volt Monitor (ZVM) Solo continuously monitors:
• One operator wearing a dual-wire wrist strap
• One supervisor wearing a dual-wire wrist strap
• One ESD worksurface
• One metal tool fixture

The ZVM Solo’s Dual Polarity Technology uses dual-wire wrist cords to place positive voltage on one line and negative voltage on the other, resulting in near zero voltage at the operator.

To determine the correct monitor for your application, make sure you check our Continuous Monitor Selection Chart.

Vermason Continuous Monitors and ESD Control

Vermason Continuous or Constant Monitors pay for themselves by improving quality, productivity, eliminating wrist strap daily testing and test result logging. EN 61340-5-1 specifies wrist strap standard ANSI/ESD S1.1 which states “The wrist strap system should be tested daily to ensure proper electrical resistance. … Daily testing may be omitted if continuous monitors are used.“(1)

Companies manufacturing products containing ESD sensitive items need to ask themselves “how important is the reliability of our products”?
Because wrist straps have a finite life, it is important to develop a test frequency that will guarantee integrity of the system. Typical test programs recommend that wrist straps that are used daily should be tested daily. However, if the products that are being produced are of such value that a guarantee of a continuous, reliable ground is needed then continuous monitoring should be considered or even required.“(2)

The wrist band will normally be worn for several hours at a time so it needs to be comfortable while making good contact with the skin. It is a good idea to check the wrist strap every time it is applied. Constant on line monitors can be used so that any breaks will be immediately found.“(2)

The ESD Association produced the ESD TR 12-01 technical report which is entitled “Survey of Constant (Continuous) Monitors for Wrist Straps”(3). It contains useful information:
Since people are one of the greatest sources of static electricity and ESD, proper grounding is paramount. One of the most common ways to ground people is with a wrist strap. Ensuring that wrist straps are functional and are connected to people and ground is a continuous task.” “While effective at the time of testing, wrist strap checker use is periodic. The failure of a wrist strap between checks may expose products to damage from electrostatic charge. If the wrist strap system is checked at the beginning of a shift and subsequently fails, then an entire shift’s work could be suspect.

Wrist strap checkers are usually placed in a central location for all to use. Wrist straps are stressed and flexed to their limits at a workstation. While a wrist strap is being checked, it is not stressed, as it would be under working conditions. Opens in the wire at the coiled cord’s strain relief are sometimes only detected under stress.

The goal remains consistent; electrical connections are tested between the ground point, coiled cord, wrist band, and body while the wearer performs operations on static sensitive items.

In many EPAs [ESD protected areas] constant monitor wrist straps are used. These fall into two categories, dual wrist band and single wrist band. The dual wrist strap type using a split band is used with a two core cord. The dual wrist strap type normally works using the resistance bridge method. The single wrist strap type uses a single strap for both grounding and monitor purposes and has an a.c. signal injected which is used for monitoring purposes. This type has the advantage of using the simpler single wrist strap.“(4)

Impedance (or single wire) constant monitors:
The impedance monitor uses a detection circuit designed to reduce false alarms and eliminate adjustments. [It] use[s] the phase difference between current and voltage to detect changes in impedance of the cord, band and person. A very low AC voltage is used for constant sensing. Any standard [single wire] wristband and coiled cord can be used.

Impedance Wave Distortion Technology used in Vermason Single Wire Continuous Monitors utilises AC analysis to determine if the correct conditions exist. A steady state 1 volt AC signal is sent out and the impedance (combination of resistance and capacitance) of the system will distort the signal wave. The acceptable distorted wave consists of a 1 megohm resistor and the impedance ranging from a 90 lb., 5 foot tall person on the low end and a 250 lb., 6 foot, 5 inch tall person on the high end. If the 1-megohm resistor is not there, the alarm will sound. If the resistive component of the path to ground exceeds 18 megohms, the alarm will sound. Vermason has never received a skin irritation complaint using impedance wave distortion technology Continuous Monitors.

Resistance (or Dual Wire) constant monitors:
This type of monitor is used with a two wire (dual) wrist strap. When a person is wearing a wrist strap, the monitor observes the resistance of the loop, consisting of a wire, a person, a wristband, and a second wire. If any part of the loop should open (become disconnected or have out of limit resistance), the circuit will go into the alarm state.” “While the continuity of the loop is monitored, the connection of the wrist strap to ground is not monitored.” “There are two types of signals used by resistance based constant monitors; steady state DC and pulsed DC. Pulsed DC signals were developed because of concerns about skin irritation. However, pulse DC units introduce periods of off time (seconds) when the system is not being monitored.“(3)

Vermason Dual Wire Continuous Monitors utilise a steady state DC signal and never have received a skin irritation complaint. Vermason Dual Wire Wrist Straps passed the ANSI/ESD S1.1 flex test at over 1,000,000 cycles vs. the 16,000 requirement while the top competitor has touted their dual wire wrist strap life at only 200,000 cycles. Some brand dual wire wrist straps do not meet the ANSI/ESD S1.1 Breakaway Force requirement of less than five pounds but greater than one pound force.

Resistance Dual Wire continuous monitors, using the same technology as on demand touch testers, is easily understood. An important feature of the Dual Wire Wrist Strap is that even if one conductor is severed, the operator has reliable path-to-ground with other wire. The electrical signal does place that amount of charge on the operator. Vermason Zero Volt Monitor utilises a steady state DC dual polarity signal, with a plus signal sent via one wire and a minus signal sent via the other wire balancing and leaving virtually zero voltage on the operator. A Programmer is available to quickly and accurately set the upper and lower resistance levels to be monitored while the Continuous Monitor is installed at the workstation.

Working surface monitors:
An option available with some continuous or constant monitors is the ability to monitor working surface ground connections. “Some continuous monitors can monitor worksurface ground connections. A test signal is passed through the worksurface and ground connections. Discontinuity or over limit resistance changes cause the monitor to alarm. Worksurface monitors test the electrical connection between the monitor, the worksurface, and the ground point. The monitor however, will not detect insulative contamination on the worksurface.“(3)

Most Vermason Continuous Monitors do monitor the working surface ground. Note: the working surface must have a conductive layer such as Dual Layer Rubber or Dissipative 3-Layer Vinyl or Micastat® Dissipative Laminate with conductive buried layers. Vermason Continuous Monitors are not recommended for use with homogeneous matting.

Selection Considerations:
When considering constant monitors, the equipment cost including the wrist strap, maintenance and training cost, labor time for performing wrist strap tests, and the potential failures due to non-functional wrist straps should be considered. A broken wrist strap may expose products to ESD over an entire shift if it is checked only at shift change with wrist strap checker. Constant monitors may reduce the time people spend testing wrist straps before each shift.“(3)

(1) ANSI/ESD S1.1 Annex A3 Frequency of System Testing
(2) User guide CLC/TR 61340-5-2 Wrist Strap clause 4.7.2.4.4 Test frequency
(3) ESD TR 12-01 Technical Report Survey of Constant (Continuous) Monitors for Wrist Straps

(4) IEC 61340-5-1 Electrostatics – Part 5-1: Protection of electronic devices from electrostatic phenomena – General requirements

Introducing New Dual Operator Continuous Monitor with Satellites

222743 monitor includes two 229904 Jewel® MagSnap Wrist Straps
  • NEW Improved Banana Jack
    Creates a more consistent connection and helps to prevent accidental disconnects with operator’s wrist strap.
  • Control unit LEDs indicate proper grounding of two mats and two operators; includes mounting hardware.
    Allows mounting Control Unit at eye level, not using any working surface area
  • Two Satellite Remote Monitors include monitored wrist strap ground, parking stud, and unmonitored ground for guest or equipment
    Versatile design allowing placement where desired up to 7 feet from control unit.
  • Audio alarm
  • Wave Distortion Technology provides real-time monitoring
    Ensures ESD protected workstation, reducing catastrophic failures and latent defects
  • Utilizes reliable wave distortion technology
    Provides true 100% continuous monitoring.
  • Can use with any brand of single wire wrist strap and coiled cord components
    Life-cycle costs of monitor / wrist strap / cord are 66% lower than dual-wire approach
  • For important information on Single Wire Continuous Impedance Monitoring Click HERE
  • Made in the United States of America
Item Description Price*
222743 Dual Operator Continuous Monitor with Wrist Straps, 4mm, 220VAC £251.20
222744 Dual Operator Continuous Monitor, 10mm, 220VAC £236.60

*The prices in the Vermason Online Catalog supersede all pricing on new product announcements and may change without notice.

Leading companies use continuous monitors as a cost effective component in satisfying some of the audit and check requirements of EN 61340-5-1. Wrist strap testing “Where continuous monitoring is used, no additional testing is required.” [EN 61340-4-1, per A.5.2] “The wrist band will normally be worn for several hours at a time so it needs to be comfortable while making good contact with the skin. It is a good idea to check the wrist strap every time it is applied. Constant on line monitors can be used so that any breaks will be immediately found.” [EN 61340-5-2 clause 5.2.7]

Click HERE for Printable Version | Request a Demo HERE | See list of sales reps and distributors HERE
All Items & programs are available through your participating distributor | Submit your questions HERE
%d bloggers like this: