Category Archives: ESD Information

How to neutralise a charge on an object that cannot be grounded

We have learnt in a previous post that within an ESD Protected Area (EPA) all surfaces, objects, people and ESD Sensitive Devices (ESDs) are kept at the same electrical potential. We achieve this by using only ‘groundable’ materials. But what do you do if you absolutely need an item in your EPA and it cannot be grounded? Don’t sweat, not all hope is lost! There are a couple of options which will allow you to use the item in question. Let us explain…

Conductors and Insulators
In ESD Control, we differentiate conductors and insulators.
Materials that easily transfer electrons are called conductors. Some examples of conductors are metals, carbon and the human body’s sweat layer.

ConductorA charged conductor can transfer electrons which allows it to be grounded

Materials that do not easily transfer electrons are called insulators and are by definition non-conductors. Some well-known insulators are common plastics and glass.

InsulatorInsulators will hold the charge and cannot be grounded and “conduct” the charge away

Both, conductors and insulators, may become charged with static electricity and discharge.
Electrostatic charges can effectively be removed from conductors by grounding them. However, the item grounded must be conductive or dissipative. An insulator on the other hand, will hold the charge and cannot be grounded and “conduct” the charge away.

Conductors and Insulators in an EPA
The first two fundamental principles of ESD Control are:

  1. Ground all conductors including people.
  2. Remove all insulators.

To achieve #1, all surfaces, products and people are bonded to Ground. Bonding means linking, usually through a resistance of between 1 and 10 megohms. Wrist straps and work surface mats are some of the most common devices used to remove static charges. Wrist straps drain charges from operators and a properly grounded mat will provide path-to-ground for exposed ESD susceptible devices. Movable items (such as containers and tools) are bonded by virtue of standing on a bonded surface or being held by a bonded person.

However, what if the static charge in question is on something that cannot be grounded, i.e. an insulator? Then #2 of our ESD Control principles will kick in. Per the ESD Standard, “All non-essential insulators and items (plastics and paper), such as coffee cups, food wrappers and personal items shall be removed from the workstation or any operation where unprotected ESDS are handled.
The ESD threat associated with process essential insulators or electrostatic field sources shall be evaluated to ensure that:

  • the electrostatic field at the position where the ESDS are handled shall not exceed 5 000 V/m;

or

  • if the electrostatic potential measured at the surface of the process required insulator exceeds 2 000 V, the item shall be kept a minimum of 30 cm from the ESDS; and
  • if the electrostatic potential measured at the surface of the process required insulator exceeds 125 V, the item shall be kept a minimum of 2,5 cm from the ESDS.”

[IEC 61340-5-1:2016 clause 5.3.4.2 Insulators]

Always keep insulators a minimum of 31cm from ESDS itemsAlways keep insulators a minimum of 31cm from ESDS items

“Process-essential” Insulators
Well, we all know that nothing in life is black and white. It would be easy to just follow the above ‘rules’ and Bob’s your uncle – but unfortunately that’s not always possible. There are situations where said insulator is an item used at the workstation such as a hand tools. They are essential – you cannot just throw them out of the EPA. If you do, the job won’t get done.
So, the question is – how do you ‘remove’ these vital insulators without actually ‘removing’ them from your EPA? There are 2 options you should try first:

1. Replace regular insulative items with an ESD protective version
There are numerous tools and accessories available that are ESD safe – from document handling to cups & dispensers and brushes and waste bins. They are either conductive or dissipative and replace the standard insulative varieties that are generally used at a workbench. For more information on using ESD safe tools and accessories, check this post.

2. Periodically apply a coat of Topical Antistat
The Reztore® Topical Antistat (or similar solution) is for use on non-ESD surfaces. After it has been applied and the surface dries, an antistatic and protective static dissipative coating is left behind. The static dissipative coating will allow charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts. It therefore gives non-ESD surfaces electrical properties until the hard coat is worn away.

If these two options are not feasible for your application, the insulator is termed “process-essential” and therefore neutralisation using an ioniser should become a necessary part of your ESD control programme.

Neutralisation
Most ESD workstations will have some insulators or isolated conductors that cannot be removed or replaced. These should be addressed with ionisation.
Examples of some common process essential insulators are a PC board substrate, insulative test fixtures and product plastic housings.

Electronic enclosures are process-essential insulators
Electronic enclosures are process-essential insulators

An example of isolated conductors can be conductive traces or components loaded on a PC board that is not in contact with the ESD worksurface.

An ioniser creates great numbers of positively and negatively charged ions. Fans help the ions flow over the work area. Ionisation can neutralise static charges on an insulator in a matter of seconds, thereby reducing their potential to cause ESD damage.
The charged ions created by an ioniser will:

  • neutralise charges on process required insulators,
  • neutralise charges on non- essential insulators,
  • neutralise isolated conductors and
  • minimise triboelectric charging.

Ioniser ExampleInsulators and isolated conductors are common in ESD Sensitive (ESDS) Devices – Ionisers can help

For more information on ionisers and how to choose the right type of ioniser for your application, read this post.

Summary
Insulators, by definition, are non-conductors and therefore cannot be grounded. Insulators can be controlled by doing the following within an EPA:

  • Keep insulators a minimum of 31cm from ESDS items at all times or
  • Replace regular insulative items with an ESD protective version or
  • Periodically apply a coat of Topical Antistat

When none of the above is possible, the insulator is termed “process-essential” and therefore neutralisation using an ioniser should become a necessary part of your ESD control programme.

Advertisements

Why Wave Distortion Technology is superior

We talked in the past about the benefits of continuous monitors and also introduced the different types (single-wire vs. dual-wire) to you. The focus of today’s post is the technology behind continuous monitors – how they work and how they compare to each other. So, let’s jump right in.

Introduction to Continuous Monitors
While wrist straps are the first and best line of defence against ElectroStatic Discharge (ESD), they must be tested to ensure that they are installed and working properly. On-demand or “touch” testers have become the most common testing method; they complete a circuit when the wrist strap wearer touches a contact plate.
One drawback with on-demand type testers is that they require a dedicated action by the wearer of the wrist strap to make the test. Also, knowing that the wrist strap has failed after the fact may possibly have exposed a highly sensitive or valuable assembly to risk. Continuous monitors eliminate the possibility of a component being exposed to ESD during the time that the wrist strap was not working properly.
If your company manufactures products containing ESD sensitive items, you need to ask yourself “how important is the reliability of our products”? Sooner or later a wrist strap is going to fail. If your products are of such high value that you need to be 100% sure your operators are grounded at all times, then you should consider a continuous monitoring system.

Technologies used for Continuous Monitors
There are three types of wrist strap monitoring on the market today:
1. Basic Capacitance / Impedance Monitoring,
2. Resistance Monitoring and
3. Wave Distortion Capacitance / Impedance Monitoring.

So, let’s look at all 3 types in a bit more detail:

1. Basic Capacitance / Impedance Monitoring
This single-wire technology makes use of the fact that a person can be thought of as one plate of a capacitor with the other plate being ground. The ground and the person are both conductors and they are separated (sometimes) by an insulator (shoes, mats, carpet, etc.) thus forming a capacitor. The combined resistance of the wrist strap and person forms a resistor so that the total circuit is a simple RC circuit.
A tiny AC current applied to this circuit will cause a displacement current in the capacitance to flow to ground providing a simple way to make sure the person (capacitor) resistor (wrist strap) and coil cord are all hooked up. Any break in this circuit results in a higher impedance that can be used to trigger an alarm.

AC capacitance monitors have a few drawbacks:

  1. They do not provide a reliable way to know if the total resistance of the circuit is too low, i.e., if the current limiting safety resistor is shorted.
  2. Simple AC capacitance monitors can be tricked into thinking the person is wearing the wrist strap when they are not. For example, laying a wrist strap and cord on a grounded mat will increase the shunt capacitance, which allows the monitor to show a good circuit even with the person out of the circuit. Forming the cord into a tight bundle or stretching it can also provide false readings.
  3. Since the capacitance and therefore the impedance of the circuit will also vary with such things as the persons size, clothing, shoe soles, conductance of the floor, chair, table mat, the person’s positions (standing or sitting), etc., these monitors often have to be “tuned” to a specific installation and operator.

2. Resistance Monitoring
Dual-wire resistance monitors were developed to overcome some of the problems with the AC capacitance types. Here again the concept is simple. By providing a second path to ground (without relying on the capacitor above) we can apply a tiny DC current. It is then simple to measure the DC resistance of the circuit and alarm if that resistance goes too high (open circuit) or too low (the safety resistor is shorted). Thus, a two-wire monitor provides the same reliability as a touch tester and a simple, easy to understand measurement. The shortcomings with the AC capacitance monitor are eliminated.

Two-wire monitors require two wires to work. This means that the wearer must wear a dual wire two-conductor wrist strap / coil cord which are more expensive than standard single wire wrist straps.
There have been some reports that a constant DC voltage applied to the wristband causes skin irritations.

3. Wave Distortion Capacitance / Impedance Monitoring
Wave Distortion Technology continuous monitors feature:

  • low test voltage,
  • a low monitor range for 1 megohm of resistance in the operator’s wrist strap and
  • instantaneous detection of an intermittent or failure of the path-to-ground of the operator or work surface that other monitors / technologies miss.

Continuous monitors using wave distortion technology apply a continuous test voltage (1.2 volts peak- “Wave Distortion” or vector impedance works by applying a continuous test voltage of 1.2 volts peak-to-peak at 1 to 2 microamperes (0.000002 amperes) to the wrist strap that is connected to the continuous or constant monitor. The test voltage creates a sine wave that the monitor circuit compares to established patterns. By monitoring the “distortions”, or shape of the sine wave, Wave Distortion Technology determines if the monitored circuit is complete – the operator is in the circuit and the total equivalent DC resistance is within specifications. Wave Distortion Technology produces a very fast alarm time (<50 milliseconds) and minimal false alarms.

Comparing Continuous Monitor Technologies
We’ll compare the three different technologies using the following parameters:
1. Safety Resistor Monitoring
2. Test Voltage
3. Banana Jack & 10mm Socket Monitoring
4. Response Time
5. In-Use Verification

1. Safety Resistor Monitoring
The purpose of the 1 megohm resistor found in series with wrist straps is solely to provide safety to the human body by limiting the amount of current that could be conducted through the body. The 1 megohm resistor is designed to limit the current to 250 microamps at 250 Volts rms AC. This is just below the perception level (and a bit before the nervous system goes awry) of most people. “Wrist straps have a current limiting resistor moulded into the ground cord head on the end that connects to the band. The resistor most commonly used is a 1 x 106W, 1/4 watt with a working voltage rating of 250 V.” [IEC TR 61340-5-2 User Guide, Clause 4.7.2.5 Current limiting]

Neutral Basic Capacitance / Impedance Monitoring
Happy Resistance Monitoring
Happy Wave Distortion Capacitance / Impedance Monitoring

2. Test Voltage
We’ve mentioned further above that some people have reported skin irritations when using resistance monitors which apply a constant DC voltage to the wristband. The problem is that the test voltages of resistance monitors is quite high (up to 16V). You have a similar issue with basic capacitance/impedance monitors (3.5V). Another thing to remember is that higher test voltages increase the risk of damage when handling ESD susceptible devices. Luckily for you, wave distortion monitors only use a test voltage of 1.2 – way below the other two technologies.

Neutral Basic Capacitance / Impedance Monitoring
Happy Resistance Monitoring
Happy Wave Distortion Capacitance / Impedance Monitoring

3. Banana Jack & 10mm Socket Monitoring
Coiled cords with banana jack and 10mm sockets are commonly used in the electronics industry. Unfortunately, these cannot be used with dual-wire resistance monitors. As mentioned further above, special dual-conductor wrist straps need to be purchased.

Happy Basic Capacitance / Impedance Monitoring
Sad Resistance Monitoring
Happy Wave Distortion Capacitance / Impedance Monitoring

4. Response Time
Detecting intermittent or complete failures in the path-to-ground of the operator or working surface is the job of a continuous monitor – but, it’s also important to look at how long it takes the monitor to report the issue. What’s the point of using a continuous monitor, if it takes the monitor 5 minutes to tell you there is an issue? All the sensitive devices you handled in the last 5 minutes may have been damaged. An instantaneous detection/alarm is therefore crucial. The slower the response time, the higher the potential impact on sensitive items. Response times for basic capacitance/impedance and resistance monitors is ~1s and ≤ 2s respectively. Wave distortion monitors on the other hand have a response time of <50ms.

Neutral Basic Capacitance / Impedance Monitoring
Neutral Resistance Monitoring
Happy Wave Distortion Capacitance / Impedance Monitoring

5. In-Use Verification
So, imagine this scenario: you received a new constant monitor, you found a nice new home for it, you install it and use it. 12 months down the line, it’s time to verify/calibrate the monitor. You have to remove the monitor from its cosy place, complete the calibration and put it back. What a pain, right? The good news is: the test limits of wave distortion monitors can be verified without removing them from the workstation. Sound like a dream, right?

Sad Basic Capacitance / Impedance Monitoring
Neutral Resistance Monitoring
Happy Wave Distortion Capacitance / Impedance Monitoring

We’ve created the below table for you to easier compare the different technologies:

Comparison of Continuous Monitors Technologies

As you can see, the latest Wave Distortion Technology provides the most reliable and stable confirmation of an operator’s continuous path-to-ground to ensure ESD sensitive product is protected at all times.
Shop our range of Wave Distortion Monitors here.

Single-Wire vs. Dual-Wire Monitors

A wrist strap is arguably the best way to provide a safe ground connection to the operator in order to dissipate accumulated static charges with the purpose to prevent dangerous ESD exposure to sensitive ESD components.

Wrist straps must be tested to ensure that they are installed and working properly. On-demand or “touch” testers have become the most common testing method. On-demand testers complete a circuit when the wrist strap wearer touches a contact plate. One drawback with on-demand type testers is that they require a dedicated action by the wearer of the wrist strap to make the test. Also, knowing that the wrist strap has failed after the fact may possibly have exposed a highly sensitive or valuable assembly to risk. Continuous monitors eliminate the possibility of a component being exposed to ESD during the period that the wrist strap was not working properly.

Types of Wrist Straps
A wrist strap in general is a conductive wristband which provides an electrical connection to skin of an operator and, in turn, by itself is connected to a known ground point at a workbench or a tool. While a wrist strap does not prevent generation of charges, its purpose is to dissipate these charges to ground as quickly as possible. A single-wire wrist strap is comprised of one conductive surface contacting the wrist of an operator and providing one electrical connection to ground. A dual-wire wrist strap has two electrically-separate parts and two separate electrical connections to ground combined in one cord.

Wrist StrapA Wrist Strap

Both types of wrist straps – when in good condition and properly worn – provide equally good connection of operator to ground. A single-wire wrist strap is undoubtedly less expensive than its dual counterpart. However, for applications where sensitive components are being handled, the share of dual-wire wrist straps is growing rapidly. The reason for this is its ability to guarantee that the wrist strap indeed provides proper dissipation of charges on the operator. The way to ensure that the wrist strap is worn properly at all times is to utilise a continuous wrist strap monitor. These units monitor proper connection of the operator to ground and alarm should this connection fail. If you want to learn more about the benefits of continuous monitoring, we recommend you read this post.

Wrist Strap Monitors
Monitoring of single-wire and dual-wire wrist straps is fundamentally different:

  • Single-wire wrist strap monitors do not have a return signal path; the only physical parameter they can rely on is parasitic capacitance of operator’s body to ground.
  • Dual-wire wrist strap monitors measure the resistance of the operator’s wrist between the two halves of the wrist strap.

Single-Wire Wrist Strap Monitoring
1. AC Capacitance Monitors
The first constant monitors developed made use of the fact that a person can be thought of as one plate of a capacitor with the other plate being ground. The ground and the person are both conductors and they are separated (sometimes) by an insulator (shoes, mats, carpet, etc.) thus forming a capacitor. The combined resistance of the wrist strap and person forms a resistor so that the total circuit is a simple RC circuit. A tiny AC current applied to this circuit will cause a displacement current in the capacitance to flow to ground providing a simple way to make sure the person (capacitor) resistor (wrist strap) and coil cord are all hooked up. Any break in this circuit results in a higher impedance that can be used to trigger an alarm. AC capacitance monitors have a few drawbacks:

  • They do not provide a reliable way to know if the total resistance of the circuit is too low, i.e., if the current limiting safety resistor is shorted.
  • Simple AC capacitance monitors can be tricked into thinking the person is wearing the wrist strap when they are not. For example, laying a wrist strap and cord on a grounded mat will increase the shunt capacitance, which allows the monitor to show a good circuit even with the person out of the circuit. Forming the cord into a tight bundle or stretching it can also provide false readings.
  • Since the capacitance and therefore the impedance of the circuit will also vary with such things as the person’s size, clothing, shoe soles, conductance of the floor, chair, table mat, the person’s positions (standing or sitting), etc., these monitors often have to be “tuned” to a specific installation and operator.

This technology is still around today and is purchased by some because of its low cost and a lack of knowledge by the End-User. A big plus of this technology is the ability to use any standard single-wire wrist strap.

2. Wave Distortion Monitors
Many of the short comings of the capacitance and other earlier monitors have been overcome with the development of AC monitors that use the concept of the wrist strap wearer as a capacitor, but in a different way. The concept of the wrist strap and wearer as an RC circuit is not wrong but it is an over simplification. The total circuit actually contains resistance, capacitance and inductance (RCL). Each component value will vary with the environment, size of wearer, and the other factors that affect the accuracy of the AC capacitance monitor. What the wave form distortion monitor looks at is not the impedance level, but at the waveform generated by the circuit. Current will lead voltage at various points due to the combinations of resistance and capacitive reactance. (There is a negligible amount of inductive reactance from the coil cord.) By monitoring these distortions” or phase shifts the WDM will determine if the circuit is complete i.e.; the wearer is in the circuit and the total equivalent DC resistance is within specifications given a range of installations. Essentially, the unit will monitor the operator by sending a “signature” signal down the coil cord to the operator’s wrist. The operator acts as a load and will reflect that signal back to the monitor with a different signature. The monitor will then compare the reflected signature to its factory pre-set signatures. If the signal is within the “good” range, the operator passes and the monitor will continue its work. If the signature is “not” good, the monitor will go into an alarm-state to warn the operator to stop working and fix the problem.

Using ESD shielding bagsExample of a single-wire wave distortion monitor

Wave distortion monitors solves many of the problems of the other types:

  • It allows the use of any brand of single-wire wrist strap
  • It cannot be tricked like the AC capacitance units
  • It provides a warning if the lower (safety) resistance limits are compromised
  • The tiny amount of current required to generate the waveform has never caused reported skin irritation.

As an added bonus, wave distortion monitors will also detect an open circuit or bad ground all the way back to the building ground point. This is a fundamental advantage of this kind of monitor. Other monitors may insure that the operator is connected to the monitor. No other monitor automatically ensures that the user is actually grounded.

Dual-Wire Wrist Strap Monitoring
Dual-wire resistance monitors were developed to overcome some of the problems with the AC capacitance types. By providing a second path to ground (without relying on the capacitor above) we can apply a tiny DC current. It is then simple to measure the DC resistance of the circuit and alarm if that resistance goes too high (open circuit) or too low (the safety resistor is shorted). Thus, a two-wire monitor provides the same reliability as a touch tester and a simple, easy to understand measurement. The shortcomings with the AC capacitance monitor are eliminated.
Two-wire monitors require two wires to work. This means that the wearer must wear a dual-wire two-conductor wrist strap / coil cord which are more expensive than standard single-wire wrist straps.

Example of a Dual-Wire Continuous MonitorExample of a dual-wire monitor

There have been some reports that a constant DC voltage applied to the wristband causes skin irritations. This has been addressed in some models by pulsing the test current and in others by lowering the test voltage.

Conclusion
Dual polarity technology provides true continuous monitoring of wrist strap functionality and operator safety according to accepted industry standards. Dual-wire systems are used to create redundancy. In critical applications, you build-in redundancy to have a backup if your primary option fails. With dual-wire wrist straps the redundancy is there as a protection rather than an alternative. If you are monitoring your dual-wire wrist strap and one wire fails, then the unit will alarm. You will still be grounded by the other wire, so there will be a significantly reduced risk of damaging ESD sensitive components if you happen to be handling them when the wrist strap fails. The wrist strap would still need to be replaced immediately. So, while both single-wire and dual-wire wrist strap monitors help to dissipate accumulated charges on an operator, only dual-wire wrist strap solutions provide assurance of a proper dissipative path from operator to ground.

6 Tips for handling “Class 0” Items

When talking about ESD Classifications a little while ago, we identified a “class 0” item as withstanding discharges of less than 250 volts.
The introduction of IEC 64340-5-1 states “This part of IEC 61340 covers the requirements necessary to design, establish, implement and maintain an electrostatic discharge (ESD) control program for activities that: manufacture, process, assemble, install, package, label, service, test, inspect, transport or otherwise handle electrical or electronic parts, assemblies and equipment susceptible to damage by electrostatic discharges greater than or equal to 100 V human body model (HBM), 200 V charged device model (CDM) and 35 V on isolated conductors.

So, the obvious question is: how do you handle items that are susceptible to voltages of less than 100V? That’s what we’re going to answer in today’s blog post.

Introduction
Years ago, it was common for devices to be vulnerable to voltages greater than 100V. As the need for smaller and faster devices increased, so did their sensitivity to ElectroStatic Discharges as circuit-protection schemes were removed to stay ahead of the market. These new extremely sensitive components are now susceptible to discharges nearing 0V. Obviously, this causes problems for companies handling these devices: while their ESD programme may be in compliance with the ESD Standard, extremely sensitive devices require tighter ESD Control to protect them from ESD failures.

Definition of “Class 0”
Before moving any further, we need to qualify the term “class 0” as there is a lot of confusion out there as to what this term actually means. As stated above, the HBM Model refers to any item with a failure voltage of less than 250V as a “class 0” component. However, in recent times, the term has been used more and more to describe ultra-sensitive devices with failure voltages of less than 100V. Whilst the following tips and tricks really work on any “class 0” item, they are specifically designed to protect extremely sensitive items that withstand discharges of less than 100V.

People are often a major factor in the generation of static chargesUltra-sensitive devices are extremely common these days

Do your homework
Imagine someone (a customer, your boss etc.) is approaching you and demands you to update all internal procedures so your company can handle “class 0” components. Do you know how to handle this request? Or would you be pulling out your hair trying to figure out what needs to be done? As explained further above, “class 0” refers to a wide range of items and there are a few things you should remember before making any changes to your existing ESD programme:

  1. Verify what ESD Model your company/engineers/customers etc. are referring to. As we have learnt in the past, there are different ESD models (HBM, CDM, MM) as well as individual classifications for each model. A lot of people get confused when it comes to citing ESD classifications. In reality, there is only one “class 0” which refers to the human body model (HBM) but it’s always best to check.
  2. Check the specific withstand voltage an individual part is susceptible to. “Class 0” refers to all items that withstand discharges of less than 250V. However, there is a big difference between a failure voltage of 240V or 50V. You need to have detailed ESD sensitivity information available before being able to make decisions on how to improve your existing ESD control programme. This step is actually part of creating a compliance verification plan.
  3. A part’s ESD classification is only of importance until it is ‘merged’ into an assembly. So, the ESD classification of a device only refers to the stand-alone component. Once it goes into another construction, the classification of the whole assembly is likely to change.

Below are 6 tips that will help your company to upgrade your ESD control programme so you can effectively and efficiently handle ultra-sensitive items without risking ESD damage.

One thing to note: proactive actions are critical. There is no point in figuring out how to protect your components from ESD damage AFTER you have received them. Trust us: it’s gonna go wrong! Instead, focus on getting things sorted BEFOREHAND. That’s the best approach to stay ahead of the game.

1. Improve Grounding
So, you will already know that inside an EPA, all conductors (including people) are grounded. Now you’re probably thinking: “But I’ve already grounded my operators and worksurfaces. What else is there left to do?”. Firstly, well done for properly grounding the ‘objects’ in your EPA – trust us, that’s not a given! The next step is to tweak things a bit to allow for even better protection. Here are some suggestions:

Personnel:

  • Decrease the wrist strap and ESD footwear upper limit. The ESD Association has test data showing charge on a person is less as the path-to-ground resistance is less.
  • Use continuous monitors and ESD smocks
  • Introduce/increase use of ESD flooring
  • Use sole or full coverage foot grounders (rather than heel grounders)

WorkstationFull coverage foot grounders are recommended when handling ultra-sensitive devices

Worksurfaces:

  • Reduce the required limit for Point-to-Point resistance of 1 x 109 per the ESD Standard to 106 to 108 ohms (see #5). The reason for this reduction is simple: 1 x 109 is too high as it still produces thousands of volts of in electrostatic charges. However, the resistance cannot be too small either as this can lead to a sudden ‘hard discharge’ potentially damaging ESD sensitive components.

Other:

  • Improve grounding of carts, shelves and equipment to Ground
  • Minimise isolated conductors like devices on PCBs

2. Minimise Charge Generation
The best form of control is to minimise charge generation. First of all, you should always use shielding packing products like bags or containers (especially when outside an EPA) as these protect from generating charges in the first place. For more information on choosing the correct type of ESD Packaging, we recommend reading this post.

The next step is to eliminate charges once they are generated – this can be achieved through grounding and ionisation. We’ll cover ionisation in #3 and #4. We’ve already talked about improved grounding in #1. However, for ultra-sensitive components, we also recommend the following:

Both types of ESD products create a low tribocharging coating which allows charges to drain off when grounded. The antistatic properties will reduce triboelectric voltage to under 200 volts.
For more tips on managing charge generation from flooring, check this post.

3. Remove Insulators
When talking about conductors and insulators, we explained that insulators cannot be grounded and can damage nearby sensitive devices with a sudden uncontrolled discharge. It is therefore critical to eliminate ALL insulators that are not required in your EPA: plastic cups, non-ESD brushes, tapes etc. How? Here are a couple of options:

EBP-Bar-for-FlyerUse ESD safe accessories whenever possible

If an insulator is absolutely necessary for production and cannot be removed from the EPA, you could consider a topical treatment which will reduce triboelectric charges.
Is this not an option, then move on to tip #4.

4. Use Ionisation
First of all, ionisation is not a cure-all. We’ve learnt that ionisers neutralise charges on an insulator.
However, that does not mean that you can just have any insulator in your EPA because the ioniser will “just fix it”. No, in this instance, prevention is generally a better option than the cure. So, your priority should ALWAYS be to remove non-process essential insulators from your EPA – see tip #3. If this is not possible – then ionisation becomes essential:

  • Ionisers can be critical to reduce induction charging caused by process necessary insulators
  • Ionisers can be critical in eliminating charges on isolated conductors like devices on PCBs
  • Offset voltage (balance) and discharge times are critical considerations depending on the actual application
  • Ionisation can reduce ElectroStatic Attraction (ESA) and charged particles clinging and contaminating products.

It is recommended to use ionisers with feedback mechanisms so you’re notified if the offset voltage is out of balance.

5. Increase ESD Training and Awareness
ESD Training is a requirement of every ESD Programme. When handling ultra-sensitive devices, it is even more important to remind everyone what pre-cautions are necessary to avoid damage. Regular ‘refreshers’ are a must and it is recommended to verify the effectiveness of the training programme, e.g. through tests. So, who, when and what should be taught? Easy!

Training is an essential part of an ESD Control ProgrammeESD Training is a vital part of every successful ESD Control Programme

  • ESD training needs to be provided to everyone who handles ESD sensitive devices – that includes managers, supervisors, subcontractors, visitors, cleaners and even temporary personnel.
  • Training must be given at the beginning of employment (BEFORE getting anywhere near a sensitive products) and in regular intervals thereafter.
  • Training should be conducted on proper compliance verification procedures and on the proper use of equipment used for verification.

6. Create an enhanced Compliance Verification Plan
We talked in a previous post about compliance verification, what it is and how to create a plan that complies with the ESD standard. So, if you already followed our steps and have a plan in place, you’re probably wondering how you can possibly improve on that? Here are a few tips:

  • Use a computer data collection system for wrist straps and foot grounders testing, e.g. SmartLog Pro™
  • Increase the testing frequency of personnel grounding devices from once per day to every time the operator enters the EPA
  • Use continuous monitors where operators are grounded via wrist straps. Consider computer based monitor data collection system, e.g. SMP. This should include continuous monitoring of the mat Ground.
  • Use Ground continuous monitors, e.g. SCS Ground Master. At a large facility, the most frequent reoccurring violation is the ESD mat ground cord either becoming disconnected from the mat or grounding point. As Ground continuous monitors will only test the fact that the mat is grounded, it is still imperative that the Resistance to Ground of the mat is regularly tested. Remember that the use of improper mat cleaners can raise the mat surface resistance above the upper recommended level of <109
  • Test ionisers more frequently or consider self-monitoring ionisers. Computer based data collection systems are a good alternative, too.
  • Increase the use of a static field meter and nano coulomb testing to verify that automated processes (like auto insertion, tape and reel, etc) are not generating charges above acceptable limits.

Conclusion
The bottom line is: the only way to protect ultra-sensitive components is to increase ESD protective redundancies and periodic verifications to all ESD Control technical elements.
If you handle ultra-sensitive items, to decrease the probability of ESD damage, additional precautions are required including additional and/or more stringent technical requirements for EPA ESD control products, increasing redundancies, and more frequent periodic verifications or audits. Additionally, ESD control process systems should be evaluated as to their performance as a system. You will need to understand how the technical elements in use perform relative to the sensitivity of the devices being handled. Thus, tailoring the process to handle the more sensitive
parts. For example: If the footwear/flooring allows a person’s body voltage to reach say 80 volts and a 50 withstand voltage item gets introduced into the process, you will either have to allow only handling via wrist straps or would have to find a way to modify the footwear/flooring performance to get peak voltages below the 50 volt threshold.

Remember: it is YOUR responsibility to do protect YOUR devices and YOUR reputation. The ESD Standard can only give recommendations and it’ll always be behind current/future developments. As soon as a Standard is published, technology will have progressed. So, if – in order to protect your devices – your company needs to implement methods/procedures that exceed the recommendations of the ESD Standard, so be it.

References:

HBM vs. CDM

As previously explained, an Electrostatic Discharge is a rapid, spontaneous transfer of an electrostatic charge induced by a high electrostatic field through a spark between two bodies at different electrostatic potentials as they approach or are separated from one another.
The ESD Association characterises three models of discharge, Human Body Model (HBM), Charged Device Model (CDM) and Machine Model (MM). Each model is intended to follow specific discharge properties such as the rise and fall times of the discharge current waveform.

Today, we will discuss HBM and CDM.

Human Body Model (HBM) simulates a person becoming charged and discharging from a bare finger to ground through the circuit under test. Humans are considered a primary source of ESD and HBM can be used to describe an ESD event due to the combination of the capacitance of a human body and resistance of skin touching a sensitive component. Typically, you need to pay better attention to personnel grounding to eliminate HBM.

Per ESD Handbook ESD TR20.20-2016 section 3.4.1 Human Body Model (HBM): “HBM has been in use for over 100 years. It was first defined to allow measurement and evaluation of explosion hazards for underground mining operations. There are a few different test standards describing the HBM for military and commercial applications, but the differences are in the application of the test, calibration of the system, and other ancillary items. The waveform, as defined by the human body resistance and capacitance, is virtually identical among all the test standards. The most widely used standard is ANSI/ESDA/JEDEC JS-001. The HBM test standard uses a stressing circuit which charges a 100 pF capacitor to a known voltage and discharges through a 1500-ohm resistor as shown in Figure 3. The simulators are verified by measuring various features of the current waveform, some of which are shown in Figure 4. Full details for tester qualification and waveform verification are described in ANSI/ESDA/JEDEC JS-001.

50528inuseAn operator handling an ESD sensitive device

Charged Device Model (CDM) simulates an integrated circuit becoming charged and discharging to a grounded metal surface. CDM can be used to describe an ESD event due to an integrated circuit that is suspended on a vacuum pick and then placed on a metal surface during assembly.
Manual operation and handling is much less likely these days as operations have become more automated. CDM is the most pragmatic discharge model in automated production today. Anytime a sensitive device is lifted from a tray and transported it is most likely generating a charge.

Per ESD Handbook ESD TR20.20-2016 section 3.4.2 Charged Device Model (CDM): “In principle, there are two variations of CDM. The first considers the situation of a device that is charged (through tribocharging) on its package, lead frame, or other conductive paths followed by a rapid discharge to ground through one pin or connector. The second considers the situation of a device which is placed in an electric field due to the presence of a charged object near the device. The device’s electrostatic potential is increased by this field. This process is sometimes referred to as static induction. The device will discharge if it is grounded while still in the electric field. In both cases, the device will discharge, the failure mode will be the same, and the failure type and location will be the same. The most widely used CDM standards use the static induction approach. In CDM simulators, the device is grounded by a pogo pin contacting one pin or lead of the device. The current through the pogo pin can be measured and recorded which is particularly important as the discharge current determines the ESD threshold, a schematic of this is shown in Figure 5.
Experimental results show that the CDM discharge current is very fast, with rise-times measured often below 100 ps with a “pulse width” (full width half-maximum [FWHM]) of less than 500 ps to1 ns, an example waveform with the key parameters is shown in Figure 6. By comparison, the HBM discharge has a typical rise-time of 2 to 10 ns and durations of hundreds of ns. Until 2014, the most commonly used CDM standards were JEDEC JESD22-C101 or ANSI/ESD STM5.3.1. These have now been superseded by ANSI/ESDA/JEDEC JS-002.

So, why does it matter?
Different types of discharge can affect devices in different ways. HBM is a somewhat slow discharge and ranges from 10 to 30 nanoseconds. CDM is a very fast discharge which in turn means the energy has no time to dissipate. The CDM-type damage threshold is often 10 to 20 times lower than the one for an HBM-type discharge. If an HBM-type discharge causes damage at 2000V, it is not uncommon to have the same component damaged by a 100 to 150V CDM event.

Per ESD Handbook ESD TR20.20-2016 section 3.2.1: “ESD threats in Electronic Production Lines ESD threats in electronics manufacturing can be classified into three major categories: 

  • Charged personnel – When one walks across a floor a static charge accumulates on the body. Simple contact of a finger to a device lead of a sensitive device or assembly which is on a different potential, e.g., grounded, allows the rapid transfer of charge to the device.
  • Charged (floating) conductor – If conductive elements of production equipment are not reliably connected to ground, these elements may be charged due to triboelectric charging or induction. Then these conductive elements may transfer charge to a device or assembly which is at a different potential.
  • Charged device/boards – During handling, devices or boards can acquire a static charge through triboelectric charging or can acquire an elevated electrostatic potential in the field of nearby charged objects. In these conditions, contact with ground or another conducting object at a different electrostatic potential will produce a very fast ESD transient.

This categorization is useful in that each category implies a set of ESD controls to be applied in the workplace. ESD threats from personnel are minimized by grounding personnel through the use of wrist straps and/or footwear/flooring systems. Discharges from conductive objects are avoided by assuring that all conductive parts that might contact devices are adequately and reliably grounded. The occurrence of ESD involving charged devices or boards is minimized by a) preventing charge generation (low-charging materials, ionization) or b) by providing low-current “soft landings” using dissipative materials.
Since these preventive measures are seldom perfectly deployed, the overall threat of ESD failure remains and the risk ultimately depends on how well the controls are maintained and the relative sensitivities of the devices being handled.”

Taking Action
Desco Europe recommends reviewing your manufacturing process and determining what model is the most relevant for your facility. Are your components handled directly by hand or by a hand tool such as tweezers or a vacuum pick?
Finding the root cause of ESD events is crucial to solving the problem. Desco Europe technology can identify events in areas like SMT line, soldering, printer and repair stations. Desco Europe has instrumentation to identify component sensitivity and measure ESD events as well as ensure compliance within your facility:

  • The SCS CTM082 ESD Pro Event Indicator has a special CDM filter switch to filter and reject EMI signals that are not caused by CDM discharges. Make sure to set requirements for static voltage and discharge strength within your production environment based on the most sensitive component in production.
  • The SCS CTM048-21 EM Eye ESD Event Meter will calculate the event magnitude for HBM and CDM. It also logs the events to a microSD card so they can be downloaded to a PC. Solving ESD problems requires data; a before-and-after analysis of data may now be measured and used to tailor your ESD control program.
  • The SCS 770063 EM Aware Monitor is ideal for automated equipment and will provide an approximate voltage for the ESD event based on HBM and CDM models. The EM Aware Monitor has Ethernet network connectivity and communicates with our Static Management Program (SMP). All activity is stored into a database for on-going quality control purposes. SMP allows you to pinpoint areas of concern and prevent ESD events. Quantifiable data allows you to see trends, become more proactive and prove the efficiency of your ESD process control system.

Best Storage Conditions for PCBs

Most people are aware of the dangers ElectroStatic Discharge (ESD) can pose on a Printed Circuit Board (PCB). A standard bare PCB (meaning that it has no semiconductor components installed) should not be susceptible to ESD damage. However, as soon as you stuff it with electronic (semiconductor) devices, it becomes susceptible according to each of the individual’s susceptibility.
However, there is another risk factor many operators forget: moisture.
So, today’s blog post is going to address both issues and will explain how you can protect your PCBs from both when storing them.

The problem with moisture
By now you will be well aware of the problems ESD damage can cause.
Moisture, on the other hand, may be a new issue to you. Surface Mounted Devices (SMDs), for example, absorb moisture and then during solder re-flow operations, the rapid rise in temperature causes the moisture to expand and the delaminating of internal package interfaces, also known as “pop corning.” The result is either a circuit board assembly that will fail testing or can prematurely fail in the field.

The problems moisture causes in SMDsMoisture from air diffuses inside the plastic body & collects in spaces between body & circuit, lead frame and wires. Expanding vapour can crack (popcorn) the plastic body or cause delamination.

Storing PCBs
All PCBs should be stored in a moisture barrier bag (MBB) that’s vacuum sealed. In addition to the bags, Desiccant Packs and Humidity Indicator Cards must be used for proper moisture protection. This ‘package’ is also known as a dry package.
Most manufacturers of the Moisture Sensitive Devices (MSD) will dictate how their product should be stored, shipped, etc. However, the IPC/JEDEC J-STD-033B standard describes the standardised levels of floor life exposure for moisture/reflow-sensitive SMD packages along with the handling, packing and shipping requirements necessary to avoid moisture/reflow-related failures. The ESD Handbook ESD TR20.20 mentions the importance of moisture barrier bags in section 5.4.3.2.2 Temperature: “While only specialized materials and structures can control the interior temperature of a package, it is important to take possible temperature exposure into account when shipping electronic parts. It is particularly important to consider what happens to the interior of a package if the environment has high humidity. If the temperature varies across the dew point of the established interior environment of the package, condensation may occur. The interior of a package should either contain desiccant or the air should be evacuated from the package during the sealing process. The package itself should have a low WVTR.

Components of a dry package
A dry package has four parts:

1. Moisture Barrier Bag (MBB)
2.
Desiccant
3.
Humidity Indicator Card (HIC)
4.
Moisture Sensitive Label (MSL)

Moisture Barrier Bag (MBB)

Moisture Barrier Bags (MBB) work by enclosing a device with a metal or plastic shield that keep moisture vapour from getting inside the bag. They have specialised layers of film that control the Moisture Vapour Transfer Rate (MVTR). The bag also provides static shielding protection.

204519
Desiccant is a drying agent which is packaged inside a porous pouch so that the moisture can get through the pouch and be absorb by the desiccant. Desiccant absorbs moisture vapour (humidity) from the air left inside the barrier bag after it has been sealed. Moisture that penetrates the bag will also be absorbed. Desiccant remains dry to the touch even when it is fully saturated with moisture vapour. The recommended amount of desiccant is dependent on the interior surface area of the bag to be used. Use this desiccant calculator to determine the minimum amounts of desiccant to be used with Moisture Barrier Bags.

Humidity Indicator Cards (HICs)


Humidity Indicator Cards (HICs) are printed with moisture sensitive spots which respond to various levels of humidity with a visible colour change from blue to pink. The humidity inside barrier bags can be monitored by the HIC inside. Examining the card when you open the bag will indicate the humidity level the components are experiencing so the user can determine if baking the devices is required.

The Moisture Sensitive Level (MSL) label


The Moisture Sensitive Level (MSL) label tells you how long the devices can stay outside the bag before they should be soldered onto the board. This label is applied to the outside of the bag. If the “level” box is blank, look on the barcode label nearby.

 

Creating a dry package
Now that you know the components of a dry package, you’re probably wondering: but how do I put it all together? Not to worry – we’ve got you covered! If you follow these steps, you will create a secure dry package and your PCBs will be protected – against ElectroStatic Discharge and moisture.

Place the desiccant and HIC onto the tray stack. Trays carry the devices. Remember to store desiccant in an air tight container until it used.
Dry Packaging - Step 1

Place the MSL label on the bag and note the proper level on the label.
Dry Packaging - Step 2

Place the tray stack (with desiccant and HIC) into the moisture barrier bag.
Dry Packaging - Step 3

Using a vacuum sealer, remove some of the air from the bag, and heat seal the bag closed. It is not good to take all the air out of the bag. Only slight evaluation is needed to allow the bag to fit inside a box.
Dry Packaging - Step 4

Now your devices are safe from moisture and ESD.
Dry Packaging - Step 5

Do you use moisture barrier bags in your facility? What are your experiences? We’d love to hear from you in the comments!

And that’s a wrap! Just to let everyone know that we will be taking a little summer break over the next few weeks so there won’t be any new posts going up until the end of September. Don’t miss us too much…

 

 

The role of employees in ESD Protection

People pose the biggest threat to ESD sensitive components. However, when properly trained, operators can become the key weapon in the fight against ESD. Every person coming into contact with ESD sensitive items should be able to prevent ESD related problems before they occur or provide immediate action when they occur. Today’s blog post will explain in detail the role operators play in ESD Protection and how your company can support them in the fight against ESD.

Introduction
As an employee, the invisible threat of ESD should be of great concern to you. ESD damage can significantly reduce your company’s profitability. This may affect your company’s ability to compete in the marketplace, your profit sharing and even your employment. Everyone likes to take pride in their work, but without proper ESD controls, your best efforts may be destroyed by ElectroStatic discharges that you can neither feel nor see.

People are often a major factor in the generation of static chargesPeople are often a major factor in the generation of static charges

Perhaps the most important factor in a successful static control programme is developing an awareness of the “unseen” problem. People are often a major factor in the generation of static charges. Studies have shown that personnel in a manufacturing environment frequently develop 5000 volts or more just by walking across the floor. Again, this is “tribocharging” produced by the separation of their shoes and the flooring as they walk.
A technician seated at a non-ESD workbench could easily have a 400-500 volt charge on his or her body caused not only by friction or tribocharging but additionally by the constant change in body capacitance that occurs from natural movements. The simple act of lifting both feet off the floor can raise the measured voltage on a person as much as 500-1000 volts.
Educating your personnel is therefore an essential basic ingredient in any effective static control programme. A high level of static awareness must be created and maintained in and around the protected area. Once personnel understand the potential problem, it might help to reinforce this understanding by hanging up a few static control posters in strategic locations. The technician doesn’t need an unprotected person wandering over and touching things on the service bench.

The invisible enemy
The biggest issue with ElectroStatic discharges is that you can neither see nor feel the threat. Daily life has other examples of hidden enemies where careful procedures must be followed to regularly obtain positive results. One example is sterilisation which combats germs and contamination in hospitals.
Damage caused by invisible and undetectable events can be understood by comparing ESD damage to medical contamination of the human body by viruses or bacteria. Although invisible, they can cause severe damage. In hospitals, the defence against this invisible threat is extensive contamination control procedures including sterilisation.

Would you consider having surgery in a contaminated operating room?Would you consider having surgery in a contaminated operating room?

We are aware of the benefits of sterilisation in medicine. We must develop the same attitude towards ESD control and “sterilise” against its contamination. Just as you would never consider having surgery in a contaminated operating room, you should never handle, assemble or repair electronic assemblies without taking adequate measures against ESD. For the hospital to sterilise most of the instruments is not acceptable; actually, it may waste money. Each and every instrument needs to be sterilised. Likewise, it is not acceptable to protect the ESD sensitive items most of the time. Effective ESD control must occur at each and every step where ESDs items are manufactured, processed, assembled, installed, packaged, labelled, serviced, tested, inspected, transported or otherwise handled.

Everyone handling sensitive components should:

  • recognise ESD threat
  • know what equipment to use, and how to use it
  • know the correct ESD procedures, and work to them
  • know how to check equipment
  • know which packaging to use
  • take corrective actions when required. [Source]

It is obvious that ESD training of personnel is prerequisite for a functioning ESD control programme.

Training
ESD training needs to be provided to everyone who handles ESD sensitive devices – that includes managers, supervisors, subcontractors, cleaners and even temporary personnel. Training must be given at the beginning of employment (BEFORE getting anywhere near an ESDS) and in regular intervals thereafter.

The training plan shall define all personnel that are required to have ESD awareness and prevention training. At a minimum, initial and recurrent ESD awareness and prevention training shall be provided to all personnel who handle or otherwise come into contact with any ESDS [ESD sensitive] items. Initial training shall be provided before personnel handle ESD sensitive devices. The type and frequency of ESD training for personnel shall be defined in the training plan. The training plan shall include a requirement for maintaining employee training records and shall document where the records are stored. Training methods and the use of specific techniques are at the organization’s discretion. The training plan shall include methods used by the organization to ensure trainee comprehension and training adequacy.” [EN 61340-5-1 Edition 1.0 2007-08 clause 5.2.2 Training Plan]

Training
Training is an essential part of an ESD Control Programme

ESD training should include:

  • theory and causes of electrostatic charging, and basic ESD understanding
  • handling procedures
  • knowledge of, use, and limitations of protective equipment
  • identification of ESDS, and understanding of ESDS sensitivity
  • Safety aspects and high voltage precautions
  • New techniques, processes, facilities and equipment before they are implemented
  • Awareness of the 61340-5-1 standard. [Source]

For operators working in assembly, repair or field service, job specific training will be required, too.

If visitors are entering an EPA, they must possess basic ESD awareness and understand how to use their wrist straps and footwear.

Operator’s safety comes first
One final word of warning: while ESD control is important, it is of secondary importance to employee safety. ElectroStatic charges or static electricity can be everywhere, however conductors can be effectively grounded and charges removed to ground. A fundamental rule in ESD control is to ground all conductors, including people. BUT: Personnel should not be grounded in situations where they could come into contact with voltage over 250 volts AC.

Resistivity and Resistance in ESD Control

There is a lot of confusion out there as to what the difference is between resistivity and resistance. We get asked questions on a regular basis so hopefully this post will put an end to any misunderstanding – we’ll explain the difference between the two and will point out the measurements you really need to worry about when it comes to your ESD Control Programme.

The difference between Resistivity and Resistance
Resistance or resistivity measurements help define the material’s ability to provide electrostatic shielding or charge dissipation.“ [Source]
However, resistance and resistivity values are not interchangeable. Let’s get a bit technical here to illustrate the difference between the two:

1. The resistance expresses the ability of a material to conduct electricity. It is therefore related to current and voltage. In fact, the surface resistance of a material is the ratio of the voltage and current that’s flowing between two pre-defined electrodes.
With a pure resistive material,

Resistance Calculation

where:

– R is the resistance (expressed in Ohm Ω),
U is the voltage (expressed in Volt) and
I is the current (expressed in Amp).

The unit of measure for surface resistance is W. It is important to remember that the surface resistance of a material is dependent on the electrodes used (shape as well as distance). If your company implements an ESD Control Programme compliant to the ESD Standard EN 61340-5-1, it is therefore vital to carry out surface resistance measurements as described in the Standard itself.

2. The surface resistivity of a material describes a general physical property. It is not influenced by the shape of the electrodes used or the distance between them. “Surface resistivity, ρ,  can  be  defined  for electric current flowing across a surface as the ratio of DC voltage drop per unit length to the surface current per unit width.” [Dr. Jaakko Paasi, VTT Industrial Systems: “Surface resistance or surface resistivity?”]
As Dr. Jaakko Paasi describes in his research note, surface resistivity can be expressed by using a concentric ring probe as  

Resistivity Calculation

where:

– k is the geometrical coefficient of the electrode assembly,
rcentre is the outside radius of the centre electrode and
router is the inside radius of the outer electrode.

For the electrodes recommended by EN 61340-5-1, the coefficient k = 10.
The unit of measure for surface resistivity is W but in practice you will often see W/square (which technically is not a physical unit).

As previously explained, the surface resistivity does not depend on shape or distance of the electrodes used when performing the test. You can compare results freely – no matter what type of electrode was used to get the measurements in the first place.

Converting from Resistivity to Resistance
Values of surface resistance and surface resistivity become comparable if the measured surface resistance value is multiplied by the geometrical coefficient of the used electrode fixture.” [Dr. Jaakko Paasi, VTT Industrial Systems: “Surface resistance or surface resistivity?”]
If you measure surface resistance according to EN 61340-5-1, then the corresponding surface resistivity can be calculated by multiplying the resistance value by the geometrical coefficient factor k = 10. Likewise, surface resistivities can be converted to surface resistances by dividing the surface resistivity value by 10.

Per User guide EN 61340-5-2:1999 Clause 4.1.1 “Point-to-point resistance has been discussed, rather than the surface and volume resistivity which was found in previous standards and reports. This change has been made to cater for non-homogenous materials, which are becoming increasingly common in these applications, as well as ease of measurement.
Particular care is needed in interpreting results when measuring non-homogeneous materials such as multilayer mats or conductive-backed synthetic fibre carpeting containing a small amount of conductive fibre. Buried conductive layers can provide shunt paths. Be clear when stating what you have measured!

A few notes in regards to measuring surface resistance and resistivity:

  • On large surfaces, such as bench-mats, readings will sometimes vary with increasing time of measurement. This is due to the ‘electrification’ of the mat beyond the area measured. It is therefore important to measure properly and to keep the duration of measurement constant. Fifteen seconds is an arbitrary but practical duration for measurement time.
  • Moreover, the materials needing to be checked in an EPA are most of the time, non-conductive polymers that have been made conductive or antistatic by addition of conductive particles or by special treatments during manufacture. The resistivity of such materials may vary from one point to another or they may be direction dependent (anisotropic).
  • EN 61340-5-1 goes some way to specifying the procedures to be followed and test probes to be used, so that the results can be compared, at least roughly.
  • Also, the resistance of some materials may vary with humidity level and temperature. It is therefore good practice to take a note of these two parameters when measuring.

So now that we’ve identified what the difference is between surface resistance and resistivity, there is one more thing we want to cover in today’s post: the different types of surface resistances you will come across when dealing with ESD and how to measure them:

1. Resistance to Ground (Rg)
Resistance to Ground is a measurement that indicates the capability of an item to conduct an electrical charge (current flow) to an attached ground connection. The higher the resistance in the path, the more slowly the charge will move though that defined path.” [Source]
The Resistance to Ground is measured to ensure that surfaces in an EPA are correctly grounded. This is certainly one of the most useful measurements in an EPA.

Performing a Resistance to Ground TestPerforming a Resistance to Ground Test

To perform the test:

  • One 2.3kg cylindrical probe is required for this measurement.
  • Connect the probe to a megohm meter and place it on the surface to test.
  • Connect the other ohmmeter lead to earth or to an ESD ground point.
  • Measure the resistance at 10V for conductive items and 100V for dissipative items.

2. Resistance Point-To-Point (Rp-p)
A point-to-point measurement used during the qualification process evaluates floor and worksurface materials, garments, chair elements, some packaging items, and many other static-control materials.“ [Source]
Resistance Point-To-Point is used to assess the performance of an item used in an EPA.

Performing a Resistance Point-To-Point Test

To perform the test:

  • Two 2.3kg cylindrical probes are required for this measurement
  • Connect the probes to a megohm meter.
  • Place the material to be tested on an insulative surface such as clean glass and place the probes on the material.
  • Measure the resistance at 10V for conductive items and 100V for dissipative items.
  • Move the probes so as to measure in a cross direction and repeat the test.

Point-to-point measurements are important during the qualification process for proper evaluation of flooring and worksurface materials. After installation, the resistance-to-ground measurement is more applicable since it emulates how the material really behaves in practice.” [Source]

3. Volume Resistance (RV)
Although this is one of the less common measurements when it comes to ESD, it’s still worth to mention the volume resistance here. You would measure the volume resistance when a non-grounded item such as a container is to be placed on a grounded item, such as a mat. The volume resistance will indicate whether the item can be used in the desired manner.

Performing a Volume Resistance TestPerforming a Volume Resistance Test

To perform the test:

  • Two 2.3kg cylindrical probes are required for this measurement
  • Connect the probes to a megohm meter.
  • Put the first probe upside down and ‘sandwich’ the test sample between it and the second probe placed on top.
  • Measure the resistance.

So hopefully we have put an end to any confusion in regards to surface resistivity and resistance and answered all your questions. If there is anything else you’d like to know, let us know in the comments.

References:

The Difference between EOS and ESD

Electrical Overstress, or EOS, has become a widely-used term over the past few years. However, a lot of people are still unsure as to what exactly it is and how it differs from ElectroStatic Discharge (ESD). Today’s blog post is intended to put an end to the confusion.

What is Electrical Overstress?

One huge problem with Electrical Overstress, or EOS, is the fact that people use the phrase in different ways. Up until now there has been no widely recognised definition. A White Paper on EOS published by the Industry Council on ESD Target Levels in 2016 uses the following definition: “An electrical device suffers an electrical overstress event when a maximum limit for either the voltage across, the current through, or power dissipated in the device is exceeded and causes immediate damage or malfunction, or latent damage resulting in an unpredictable reduction of its lifetime.
Simplified, EOS is the exposure of a component or PCB board to a current or voltage beyond its maximum ratings.  This exposure may or may not result in a catastrophic failure.

ElectoStatic Discharge (ESD) versus Electrical Overstress (EOS)

You can compare an ESD event with a knocked-over glass of water on a floor: you’ll get a small puddle but once all the water has spilt from the cup, it’s gone. There is no more water left and the damage is fairly limited. [Source]

Knocked-over glass of waterESD can be compared to a knocked-over glass of water

However, an EOS event can be compared to an open tap; there may be just a little drip in comparison but there is an unlimited amount of water available. After a while, the entire floor may be flooded and could cause some serious damage. As you can see, EOS events last several magnitudes longer than most ESD events. [Source]

Dripping tabEOS can be compared to a dripping tab

By many, ESD is seen as just one type of electrical stress. EOS on the other hand, describes a wide number of outcomes resulting from multiple stresses or root causes.
ESD does not require a “victim” or damaged product. There will be an ESD event if two objects are at different charge levels and a rapid, spontaneous transfer of an ElectroStatic charge between them occurs. An electrical stress can only become an overstress (as in EOS) if we’re aware of how much stress the “victim” (i.e. sensitive device) can withstand. One specification used to document these limits is the “Absolute Maximum Rating” (AMR). More on that in a little while. Back to EOS and ESD for now. The below image highlights the relationship and contrast between EOS and ESD:

Relationship-EOS-ESDRelationship between EOS and ESD [Source]

Generally speaking, EOS describes extreme signals other than ESD. The following table lists the main differences:

 ESD Event  EOS Event
 Cause

Rapid discharge of accumulated charge

Voltage and/or currents associated with operation of equipment or with power generating equipment
 Duration Once accumulated charge is consumed, ESD event can no longer manifest itself Lasts as long as originating signals; no inherent limitation
 Characteristics Have specific waveform which includes rapid rising edge and asymptotic read edge Can have any physically possible waveform as sources of EOS are often unpredictable
 Occurrence Non-periodic and non-repeatable (accumulation of charge cannot be guaranteed) Mostly (but not always) periodic and repeatable

Differences between EOS and ESD [Source]

The importance of Electrical Overstress (EOS)

Many failures in the electronics industry can be contributed to EOS. Yes, ESD has received a lot of attention over the past years. However, ESD represents only a small percentage of total EOS damages.

Typical causes of device failuresTypical causes of device failures [Source]

As explained further above, EOS and ESD are NOT the same thing. This is extremely important because:

  • EOS damages are much more common compared to failures caused by ESD.
  • A comprehensive ESD Control Programme will provide protection against ESD but not EOS.

Now that you have learnt what EOS is, how it’s different from ESD and that ESD protection is not effective for EOS damage, the obvious question will be “How can I protect my sensitive devices from EOS failures?”. That’s where we go back to our “Absolute Maximum Rating” (AMR) mentioned earlier.

Absolute Maximum Rating (AMR) and Electrical Overstress (EOS)

We’ve established earlier that EOS is caused by exceeding specific limits of a device, the so called Absolute Maximum Rating or AMR.
AMR represents “the point beyond which a device may be damaged by a particular stress” [Source].

Interpretation of AMR* [Source]

Interpretation of AMR* [Source]

*the yellow line represents the number of components suffering catastrophic damage

  • Region A is the safe operating area in which devices are to operate as anticipated.
  • Region B does not guarantee for the device to function as it should. No physical damage is expected in this area; however, if a device is operated in this region for extended periods of time, it may cause reliability problems.
  • The upper limit of region B represents the AMR. Issues will arise if a device is operated beyond this point.
  • Region C is the first area of electrical overstress causing latent failures.
  • Region D is the second area of electrical overstress causing immediate damages.

Protecting your sensitive devices from Electrical Overstress (EOS)

As already stated, ESD Protection measures are useless when it comes to protecting your sensitive devices from EOS. “Rather, improvement and mitigation of EOS failure causes will only advance through better communication between the supplier and the customer. This includes proper understanding of AMR, realistic specifications for it, finding the root cause of EOS damage incidents, and identifying the field and system application issues.” [Source]

References:

Is ESD Control a Waste of Time (and Money)?

Today’s post is going to be a bit shorter than usual. BUT: that doesn’t mean it’s going to be any less interesting. Quite the opposite! So, let’s jump right in.

A little while ago we were approached by a customer with the following statement:

Generally speaking, most IC’s these days already have adequate protection on their pins, the notable exception being discrete J-FETs, and MOSFETs, especially for RF applications.
It’s difficult to advise when these might be in use on an assembly without giving everyone in-depth training on circuit design, so to avoid trouble in the 1% of cases that matter, it’s a good idea to play safe and keep applying our procedures for the other 99% of parts too.
I am of the opinion that a PCCU in its housing does not need special treatment though. It has ESD protection, and has passed testing for this, so I am not worried about someone touching its pins without wearing a grounded wristband, etc …

So, is this statement true? Is ESD Control obsolete? Let’s find out!

Types of ESD Damage

Remember that there are two types of ESD damage:
1) catastrophic failure and
2) latent defects.

While catastrophic failures cause an ESD sensitive item to be damaged permanently, latent defects only partially degrade an ESD sensitive item that is exposed to an ESD event. It may continue to perform its intended function and may not be detected by normal inspection. However, intermittent or permanent failures may occur later.

Bottom line: Even if an ESD sensitive component has quite a high withstand voltage and no catastrophic failure has been caused, latent defects may still make your life miserable.

Continued Requirement for ESD Control

Here is a link to the ESD Association’s ESD Technology Roadmap. The document illustrates what future thresholds are expected for ESD sensitive devices and how they impact on ESD Control. The thresholds are determined by current trends in the semiconductor industry and are displayed as “roadmaps”. The aim is to predict future limitations of device protection which are driven by performance requirements and technology scaling.

You should head-over now and read through the document. But in case you haven’t got time, here are the main take-away notes:

  • Finally, these trends point to the need for continued improvements in ESD control procedures and compliance.” [section 1.0 Synopsis]
  • Therefore, the prevailing trend will be circuit performance at the expense of ESD protection levels.” [section 2.1 Overview]
  • Therefore, implementation of advanced HBM controls using the limits and qualifications requirements in ANSI/ESD S20.20, IEC 61340-5-1, or JESD625, would become necessary within the next 3 years.” [section 2.2 Device ESD Threshold Roadmaps]

Bottom line: As electronic technology advances, electronic circuitry gets progressively smaller. As the size of components is reduced, so is the microscopic spacing of insulators and circuits within them, increasing their sensitivity to ESD. Therefore, the need for proper ESD protection increases every day.

ESD control procedures and compliance continue to be requiredESD control procedures and compliance continue to be required

For more information on the ESD damage and the costly effects of ESD, check-out this post.

Protect your sensitive devices from ESD Damage

Every company should document the most ESD sensitive device that they are handling.
A prerequisite of ESD control is the accurate and consistent identification of ESD susceptible items. Some companies assume that all electronic components are ESD susceptible. However, others write their ESD control plan based on the device and item susceptibility or withstand voltage of the most sensitive components used in the facility. A general rule is to treat any device or component that is received in ESD packaging as an ESD susceptible item.
This post provides further information on how to set-up an ESD Control Plan.

So, tell us: are there instances in your company where you forego standard ESD Control practices? If so, let us know in the comments – we’d like to hear from you.

%d bloggers like this: